
(a)
Interpretation:
To calculate the mass of
Concept introduction:
Ammonium perchlorate upon decomposition gives
The total number of moles of the substance is equal to the mass of the substance divided by the molecular weight of that substance.
The limiting reagent in the
(a)

Answer to Problem 98GQ
The mass of water molecule is produced upon decomposition of ammonium perchlorate is
The mass of oxygen molecule is produced upon decomposition of ammonium perchlorate is
Explanation of Solution
The mass of
Given:
The mass of ammonium perchlorate is
The balanced chemical equation of decomposition of ammonium perchlorate is written as,
The number of moles
From equation (1), two moles of ammonium perchlorate produced four moles of water molecules. Therefore, the number of moles
The mass
Therefore, the mass of water molecule is produced upon decomposition of ammonium perchlorate is
From equation (1), two moles of ammonium perchlorate produced one mole of the oxygen molecule. Therefore, the number of moles
The mass
Therefore, the mass of oxygen molecule is produced upon decomposition of ammonium perchlorate is
(b)
Interpretation:
To calculate the mass of aluminium which is required to use up all of the oxygen to form
Concept introduction:
Ammonium perchlorate upon decomposition gives
The total number of moles of the substance is equal to the mass of the substance divided by the molecular weight of that substance.
The limiting reagent in the chemical reaction is the substance that is totally consumed when the chemical reaction is complete. The amount of product formed is limited by the limiting reagent.
(b)

Answer to Problem 98GQ
The mass of aluminium powder which is required to use up all of the oxygen to form
Explanation of Solution
The mass of aluminium which is required to use up all of the oxygen to form
Given:
The number of moles of oxygen molecule calculated in sub-part (a) is
The balanced chemical equation of the reaction of aluminium with oxygen molecule is written as,
Since the entire oxygen molecule is used to react with the aluminium powder to produce
From equation (2), four moles of aluminium reacted with three moles of the oxygen molecule. Therefore, the number of moles
The mass
Therefore, the mass of aluminium powder which is required to use up all of the oxygen to form
(c)
Interpretation:
To calculate the mass of
Concept introduction:
Ammonium perchlorate upon decomposition gives
The total number of moles of the substance is equal to the mass of the substance divided by the molecular weight of that substance.
The limiting reagent in the chemical reaction is the substance that is totally consumed when the chemical reaction is complete. The amount of product formed is limited by the limiting reagent.
(c)

Answer to Problem 98GQ
The mass of
Explanation of Solution
The mass of
Given:
The mass of aluminium powder which is required to use up all of the oxygen to form
The balanced chemical equation of the reaction of aluminium with oxygen molecule is written as,
Four moles of aluminium produced two moles of
The mass
Therefore, the mass of
Want to see more full solutions like this?
Chapter 21 Solutions
Owlv2 With Ebook, 1 Term (6 Months) Printed Access Card For Kotz/treichel/townsend/treichel's Chemistry & Chemical Reactivity, 10th
- Electronegativity is a measure of the tendency of an atom to attract a bonding pair of electrons. Describe how electronegativity is illustrated on the periodic table including trends between groups and periods and significance of atom size.arrow_forwardDefine the term “transition.” How does this definition apply to the transition metals?arrow_forwardDescribe how the properties of the different types of elements (metals, nonmetals, metalloids) differ.arrow_forward
- Use a textbook or other valid source to research the physical and chemical properties of each element listed in Data Table 1 using the following as a guideline: Ductile (able to be deformed without losing toughness) and malleable (able to be hammered or pressed permanently out of shape without breaking or cracking) or not ductile or malleable Good, semi, or poor conductors of electricity and heat High or low melting and boiling points Occur or do not occur uncombined/freely in nature High, intermediate, or low reactivity Loses or gains electrons during reactions or is not reactivearrow_forwardProvide the Physical and Chemical Properties of Elements of the following elements listedarrow_forwardQuestions 4 and 5arrow_forward
- For a titration of 40.00 mL of 0.0500 M oxalic acid H2C2O4 with 0.1000 M KOH, calculate the pH at each of the following volume of KOH used in the titration: 1) before the titration begin;2) 15 mL; 3) 20 mL; 4) 25 mL; 5) 40 mL; 6) 50 mL. Ka1 = 5.90×10^-2, Ka2 = 6.50×10^-5 for oxalic acid.arrow_forwardPredict the major organic product(s), if any, of the following reactions. Assume all reagents are in excess unless otherwise indicated.arrow_forwardPredict the major organic product(s), if any, of the following reactions. Assume all reagents are in excess unless otherwise indicated.arrow_forward
- How many signals would you expect to find in the 1 H NMR spectrum of each given compound? Part 1 of 2 2 Part 2 of 2 HO 5 ☑ Х IIIIII***** §arrow_forwardA carbonyl compound has a molecular ion with a m/z of 86. The mass spectra of this compound also has a base peak with a m/z of 57. Draw the correct structure of this molecule. Drawingarrow_forwardCan you draw this using Lewis dot structures and full structures in the same way they are so that I can better visualize them and then determine resonance?arrow_forward
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStax
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning





