Physics for Scientists and Engineers with Modern Physics
4th Edition
ISBN: 9780131495081
Author: Douglas C. Giancoli
Publisher: Addison-Wesley
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 21, Problem 52P
(III) Suppose in Example 21–11 that x = 0.250 m. Q = 3.15 μC, and that the uniformly charged wire is only 6.50 m long and extends along the y axis from y = −4.00 m to y = +2.50 m. (a) Calculate Ex and Ey at point P. (b) Determine what the error would be if you simply used the result of Example 21–11, E = λ/πϵ0x. Express this error as (Ex − E)/E and Ey/E.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
In Figure 21-43, two tiny conducting balls of identical mass m and identical charge q hang from nonconducting threads of length L. Assume that is so small that tan can be replaced by its approximate equal, sin 8.
100
Fig. 21-43
(a) Show that equilibrium separation x of the balls is given by the equation below. (Do this on paper. Your instructor may ask you to turn in this work.)
333
x =
q²L
2#comg
This answer has not been graded yet.
(b) If L = 105 cm, m = 8 g, and x = 7.0 cm, what is q?
I need the answer as soon as possible
How do I explain part a?
Chapter 21 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 21.5 - Return to the Chapter-Opening Question, page 559,...Ch. 21.5 - What is the magnitude of F12 (and F21) in Example...Ch. 21.5 - Determine the magnitude and direction of the net...Ch. 21.5 - (a) Consider two point charges of the same...Ch. 21.6 - Four charges of equal magnitude, but possibly...Ch. 21 - If you charge a pocket comb by rubbing it with a...Ch. 21 - Why does a shirt or blouse taken from a clothes...Ch. 21 - Explain why fog or rain droplets tend to form...Ch. 21 - A positively charged rod is brought close to a...Ch. 21 - Why does a plastic ruler that has been rubbed with...
Ch. 21 - Contrast the net charge on a conductor to the free...Ch. 21 - Figures 217 and 218 show how a charged rod placed...Ch. 21 - When an electroscope is charged, the two leaves...Ch. 21 - The form of Coulombs law is very similar to that...Ch. 21 - We are not normally aware of the gravitational or...Ch. 21 - Is the electric force a conservative force? Why or...Ch. 21 - What experimental observations mentioned in the...Ch. 21 - When a charged ruler attracts small pieces of...Ch. 21 - Explain why the test charges we use when measuring...Ch. 21 - When determining an electric field, must we use a...Ch. 21 - Draw the electric field lines surrounding two...Ch. 21 - Assume that the two opposite charges in Fig. 2134a...Ch. 21 - Consider the electric field at the three points...Ch. 21 - Why can electric field lines never cross?Ch. 21 - Given two point charges, Q and 2Q, a distance ...Ch. 21 - Suppose the ring of Fig. 2128 has a uniformly...Ch. 21 - Consider a small positive test charge located on...Ch. 21 - We wish to determine the electric field at a point...Ch. 21 - In what ways does the electron motion in Example...Ch. 21 - Describe the motion of the dipole shown in Fig....Ch. 21 - Explain why there can be a net force on an...Ch. 21 - (I) What is the magnitude of the electric force of...Ch. 21 - (I) How many electrons make up a charge of 38.0 C?Ch. 21 - (I) What is the magnitude of the force a + 25 C...Ch. 21 - (I) What is the repulsive electrical force between...Ch. 21 - (II) When an object such as a plastic comb is...Ch. 21 - (II) Two charged dust particles exert a force of...Ch. 21 - (II) Two charged spheres are 8.45 cm apart. They...Ch. 21 - (II) A person scuffing her feet on a wool rug on a...Ch. 21 - (II) What is the total charge of all the electrons...Ch. 21 - (II) Compare the electric force holding the...Ch. 21 - (II) Two positive point charges are a fixed...Ch. 21 - (II) Particles of charge +75, +48, and 85 C are...Ch. 21 - (II) Three charged particles are placed at the...Ch. 21 - (II) Two small nonconducting spheres have a total...Ch. 21 - (II) A charge of 4.15 mC is placed at each corner...Ch. 21 - (II) Two negative and two positive point charges...Ch. 21 - (II) A charge Q is transferred from an initially...Ch. 21 - (III) Two charges, Q0 and 4Q0, are a distance ...Ch. 21 - (III) Two positive charges +Q are affixed rigidly...Ch. 21 - (III) Two small charged spheres hang from cords of...Ch. 21 - (I) What are the magnitude and direction of the...Ch. 21 - (I) A proton is released in a uniform electric...Ch. 21 - (I) Determine the magnitude and direction of the...Ch. 21 - (I) A downward electric force of 8.4 N is exerted...Ch. 21 - (I) The electric force on a +4.20-C charge is...Ch. 21 - (I) What is the electric field at a point when the...Ch. 21 - (II) Draw, approximately, the electric field lines...Ch. 21 - (II) What is the electric field strength at a...Ch. 21 - (II) A long uniformly charged thread (linear...Ch. 21 - (II) The electric field midway between two equal...Ch. 21 - (II) Calculate the electric field at one corner of...Ch. 21 - (II) Calculate the electric field at the center of...Ch. 21 - (II) Determine the direction and magnitude of the...Ch. 21 - (II) Two point charges, Q1 = 25 and Q2 = +45 ,...Ch. 21 - (II) A very thin line of charge lies along the x...Ch. 21 - (II) (a) Determine the electric field E at the...Ch. 21 - (II) Draw, approximately, the electric field lines...Ch. 21 - (II) Two parallel circular rings of radius R have...Ch. 21 - (II) You are given two unknown point charges, Q1...Ch. 21 - (II) Use Coulombs law to determine the magnitude...Ch. 21 - (II) (a) Two equal charges Q are positioned at...Ch. 21 - (II) At what position, x = xM, is the magnitude of...Ch. 21 - (II) Estimate the electric field at a point 2.40...Ch. 21 - (II) The uniformly charged straight wire in...Ch. 21 - (II) Use your result from Problem 46 to find the...Ch. 21 - (II) Determine the direction and magnitude of the...Ch. 21 - (II) A thin rod bent into the shape of an arc of a...Ch. 21 - (III) A thin glass rod is a semicircle of radius...Ch. 21 - (III) Suppose a uniformly charged wire starts at...Ch. 21 - (III) Suppose in Example 2111 that x = 0.250m. Q =...Ch. 21 - (III) A thin rod of length carries a total charge...Ch. 21 - (III) Uniform plane of charge. Charge is...Ch. 21 - (III) Suppose the charge Q on the ring of Fig....Ch. 21 - (II) An electron with speed v0 = 27.5 106 m/s is...Ch. 21 - (II) An electron has an initial velocity...Ch. 21 - (II) An electron moving to the right at 7.5 105...Ch. 21 - (II) At what angle will the electrons in Example...Ch. 21 - (II) An electron is traveling through a uniform...Ch. 21 - (II) A positive charge q is placed at the center...Ch. 21 - (II) A dipole consists of charges +e and e...Ch. 21 - (II) The HCl molecule has a dipole moment of about...Ch. 21 - (II) Suppose both charges in Fig. 2145 (for a...Ch. 21 - (II) An electric dipole, of dipole moment p and...Ch. 21 - (III) Suppose a dipole p is placed in a nonuniform...Ch. 21 - (III) (a) Show that at points along the axis of a...Ch. 21 - How close must two electrons be if the electric...Ch. 21 - Given that the human body is mostly made of water,...Ch. 21 - A 3.0-g copper penny has a positive charge of 38...Ch. 21 - Measurements indicate that there is an electric...Ch. 21 - (a) The electric field near the Earths surface has...Ch. 21 - A water droplet of radius 0.018 mm remains...Ch. 21 - Estimate the net force between the CO group and...Ch. 21 - Suppose that electrical attraction, rather than...Ch. 21 - In a simple model of the hydrogen atom, the...Ch. 21 - A positive point charge Q1 = 2.5 105 C is fixed...Ch. 21 - When clothes are removed from a dryer, a 40-g sock...Ch. 21 - A small lead sphere is encased in insulating...Ch. 21 - A large electroscope is made with leaves that are...Ch. 21 - Dry air will break down and generate a spark if...Ch. 21 - Two pint charges, Q1 = 6.7 and Q2 = 1.8 C, are...Ch. 21 - Packing material made of pieces of foamed...Ch. 21 - One type of electric quadrupole consists of two...Ch. 21 - Suppose electrons enter a uniform electric field...Ch. 21 - An electron moves in a circle of radius r around a...Ch. 21 - Three very large square planes of charge are...Ch. 21 - A point charge (m = 1.0 g) at the end of an...Ch. 21 - Four equal positive point charges, each of charge...Ch. 21 - Two small, identical conducting spheres A and B...Ch. 21 - A point charge of mass 0.210 kg, and net charge...Ch. 21 - A one-dimensional row of positive ions, each with...Ch. 21 - (III) A thin ring-shaped object of radius a...Ch. 21 - (III) An 8.00 C charge is on the x axis of a...
Additional Science Textbook Solutions
Find more solutions based on key concepts
a. Draw the mechanism for the following reaction if it a involves specific-base catalysis. b. Draw the mechanis...
Organic Chemistry (8th Edition)
Plants use the process of photosynthesis to convert the energy in sunlight to chemical energy in the form of su...
Campbell Essential Biology with Physiology (5th Edition)
11. A ball thrown horizontally at 25 m/s travels a horizontal distance of 50 m before hitting the ground. From...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
A pure-breeding tall plant producing oval fruit as described in Problem 2 is crossed to a pure-breeding short p...
Genetic Analysis: An Integrated Approach (3rd Edition)
What two body structures contain flexible elastic cartilage?
Anatomy & Physiology (6th Edition)
53. This reaction was monitored as a function of time:
A plot of In[A] versus time yields a straight ...
Chemistry: Structure and Properties (2nd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- 58 G0 Proton in a well Figure 24-59 shows electric poten- tial V along an x axis. The scale of the ver- tical axis is set by V, = 10.0 V. A pro- x (cm) 0 1 2 3 4 5 6 7 %3D ton is to be released Figure 24-59 Problem 58. at x= 3.5 cm with initial kinetic energy 4.00 eV. (a) If it is initially moving in the neg- ative direction of the axis, does it reach a turning point (if so, what is the x coordinate of that point) or does it escape from the plotted region (if so, what is its speed at x = 0)? (b) If it is initially moving in the positive direction of the axis, does it reach a turning point (if so, what is the x coordinate of that point) or does it escape from the plotted region (if so, what is its speed at x = 6.0 cm)? What are the (c) magnitude Fand (d) direction (positive or negative direction of the x axis) of the electric force on the proton if the proton moves just to the left of x = 3.0 cm? What are (e) Fand (f) the direction if the proton moves just to the right of x = 5.0 cm?…arrow_forwardPls asaparrow_forward7) A wire with 4 meters length and constant charge density lambda = 4nC/m is placed diagonally on x-y plane. One end is at the origin and it makes 45 degrees with the x-axis. Find the integral expression for Ex at x=7 y=10arrow_forward
- 5 Figure 26-19 shows four situations in which positive and nega- tive charges move horizontally and gives the rate at which each charge moves. Rank the situations according to the effective cur- rent through the regions, greatest first. 7 C/s 2 C/s 6 C/s 3 C/s +) 5 C/s (c) 1 C/s (d) 4 C/s (a) (b)arrow_forward(1 )Region one z>0 consist of dielectric medium (er=4) (2)Region two z<0 consist of perfect conductor. Determine D&E at point (3,2,-3) and point (2,-1,3), if the surface charge on the conductor is equal to 8nc/m?arrow_forward*39 SSM In Fig. 23-49, a small, nonconducting ball of mass m = 1.0 mg and charge q = 2.0 x 10-8C (distributed uniformly through its vol- ume) hangs from an insulating thread that makes an angle 0 = 30° with a vertical, uniformly charged nonconducting sheet (shown in cross sec- tion). Considering the gravitational force on the ball and assuming the sheet extends far vertically and into and out of the page, calculate the surface charge density o of the sheet. m.arrow_forward
- 35 SSM In crystals of the salt cesium chloride, cesium ions Cs+ form the eight corners of a cube and a chlorine ion Cl is at the cube's center (Fig. 21-36). The edge length of the cube is 0.40 nm. The Cst ions are each deficient by one electron (and thus each has a charge of +e), and the Cl- ion has one excess electron (and thus has a charge of -e). (a) What is the magnitude of the net electro- static force exerted on the Cl ion by the eight Cs ions at the cor- ners of the cube? (b) If one of the Cs* ions is missing, the crystal is said to have a defect; what is the magnitude of the net electrostatic force exerted on the Cl- ion by the seven remaining Cs+ ions? Cs+ 0.40 nmarrow_forwardThis is about inject printing of expiration dates on eggs.arrow_forwardCalculate the magnitude and direction of the electric field 2.0 m from a long wire that is charged uniformly at λ =4.0 x 10-6 C/m.arrow_forward
- An imaginary closed cube-shaped surface on the L side is in a region where there is a uniform electric field ?. What is the electrical flow through each face of the cube and the total flow through the cube when: (a) it is oriented with two of its faces perpendicular to ? (Figure a) and (b) it undergoes a rotation of an angle θ in around a vertical axis (Figure b).arrow_forward42 In Fig. 21-39, two tiny conducting balls of identical mass m and identical charge q hang from nonconducting threads of length L. Assume that e is so small that tan e can be replaced by its approximate equal, sin 0. (a) Show that /eje L. q²L 2περπg 1/3 gives the equilibrium separation x of the balls. (b) If L = 120 cm, m = 10 g, and x = 5.0 cm, what is lql? x-arrow_forward(a) The electric field near the Earth’s surface has magnitude of about 150 N/C What is the acceleration experienced by an electron near the surface of the Earth? (b) What about a proton? (c) Calculate the ratio of each acceleration to g= 9.8 m/s 2arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY