Physics for Scientists and Engineers with Modern Physics
4th Edition
ISBN: 9780131495081
Author: Douglas C. Giancoli
Publisher: Addison-Wesley
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 21, Problem 13P
(II) Three charged particles are placed at the corners of an equilateral triangle of side 1.20 m (Fig. 21–53). The charges are +7.0 μC, –8.0 μC, and –6.0 μC. Calculate the magnitude and direction of the net force on each due to the other two.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
(II) Three positive particles of equal charge, +17.0 µC, are
located at the corners of an equilateral triangle of side
15.0 cm (Fig. 16–53). Calculate
the magnitude and direction of
the net force on each particle
+17.0 µC
due to the other two.
FIGURE 16–53
Problem 12.
+17.0 μC
15.0 cm +17.0 µC
15.0 cm
15.0 cm
(II) Particles of charge +65, +48, and –95 µC are placed
in a line (Fig. 16–52). The center one is 0.35 m from each of
the others. Calculate the net force on each charge due to
the other two.
+65 µC
+48 µC
-95 µC
0.35 m
0.35 m
FIGURE 16–52 Problem 11.
13. (II) Three positive particles of equal
charge, +17.0 μC, are located at the cor-
ners of an equilateral triangle of side
15.0 cm (Fig.21-55 ). Calculate the
magnitude and direction of the net force
on each particle due to the other two.
Figure 21-55
+170 μC
15.0 cm
15.0 cm
+170 μC 15.0 cm +170 μC
Problem 130.
Chapter 21 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 21.5 - Return to the Chapter-Opening Question, page 559,...Ch. 21.5 - What is the magnitude of F12 (and F21) in Example...Ch. 21.5 - Determine the magnitude and direction of the net...Ch. 21.5 - (a) Consider two point charges of the same...Ch. 21.6 - Four charges of equal magnitude, but possibly...Ch. 21 - If you charge a pocket comb by rubbing it with a...Ch. 21 - Why does a shirt or blouse taken from a clothes...Ch. 21 - Explain why fog or rain droplets tend to form...Ch. 21 - A positively charged rod is brought close to a...Ch. 21 - Why does a plastic ruler that has been rubbed with...
Ch. 21 - Contrast the net charge on a conductor to the free...Ch. 21 - Figures 217 and 218 show how a charged rod placed...Ch. 21 - When an electroscope is charged, the two leaves...Ch. 21 - The form of Coulombs law is very similar to that...Ch. 21 - We are not normally aware of the gravitational or...Ch. 21 - Is the electric force a conservative force? Why or...Ch. 21 - What experimental observations mentioned in the...Ch. 21 - When a charged ruler attracts small pieces of...Ch. 21 - Explain why the test charges we use when measuring...Ch. 21 - When determining an electric field, must we use a...Ch. 21 - Draw the electric field lines surrounding two...Ch. 21 - Assume that the two opposite charges in Fig. 2134a...Ch. 21 - Consider the electric field at the three points...Ch. 21 - Why can electric field lines never cross?Ch. 21 - Given two point charges, Q and 2Q, a distance ...Ch. 21 - Suppose the ring of Fig. 2128 has a uniformly...Ch. 21 - Consider a small positive test charge located on...Ch. 21 - We wish to determine the electric field at a point...Ch. 21 - In what ways does the electron motion in Example...Ch. 21 - Describe the motion of the dipole shown in Fig....Ch. 21 - Explain why there can be a net force on an...Ch. 21 - (I) What is the magnitude of the electric force of...Ch. 21 - (I) How many electrons make up a charge of 38.0 C?Ch. 21 - (I) What is the magnitude of the force a + 25 C...Ch. 21 - (I) What is the repulsive electrical force between...Ch. 21 - (II) When an object such as a plastic comb is...Ch. 21 - (II) Two charged dust particles exert a force of...Ch. 21 - (II) Two charged spheres are 8.45 cm apart. They...Ch. 21 - (II) A person scuffing her feet on a wool rug on a...Ch. 21 - (II) What is the total charge of all the electrons...Ch. 21 - (II) Compare the electric force holding the...Ch. 21 - (II) Two positive point charges are a fixed...Ch. 21 - (II) Particles of charge +75, +48, and 85 C are...Ch. 21 - (II) Three charged particles are placed at the...Ch. 21 - (II) Two small nonconducting spheres have a total...Ch. 21 - (II) A charge of 4.15 mC is placed at each corner...Ch. 21 - (II) Two negative and two positive point charges...Ch. 21 - (II) A charge Q is transferred from an initially...Ch. 21 - (III) Two charges, Q0 and 4Q0, are a distance ...Ch. 21 - (III) Two positive charges +Q are affixed rigidly...Ch. 21 - (III) Two small charged spheres hang from cords of...Ch. 21 - (I) What are the magnitude and direction of the...Ch. 21 - (I) A proton is released in a uniform electric...Ch. 21 - (I) Determine the magnitude and direction of the...Ch. 21 - (I) A downward electric force of 8.4 N is exerted...Ch. 21 - (I) The electric force on a +4.20-C charge is...Ch. 21 - (I) What is the electric field at a point when the...Ch. 21 - (II) Draw, approximately, the electric field lines...Ch. 21 - (II) What is the electric field strength at a...Ch. 21 - (II) A long uniformly charged thread (linear...Ch. 21 - (II) The electric field midway between two equal...Ch. 21 - (II) Calculate the electric field at one corner of...Ch. 21 - (II) Calculate the electric field at the center of...Ch. 21 - (II) Determine the direction and magnitude of the...Ch. 21 - (II) Two point charges, Q1 = 25 and Q2 = +45 ,...Ch. 21 - (II) A very thin line of charge lies along the x...Ch. 21 - (II) (a) Determine the electric field E at the...Ch. 21 - (II) Draw, approximately, the electric field lines...Ch. 21 - (II) Two parallel circular rings of radius R have...Ch. 21 - (II) You are given two unknown point charges, Q1...Ch. 21 - (II) Use Coulombs law to determine the magnitude...Ch. 21 - (II) (a) Two equal charges Q are positioned at...Ch. 21 - (II) At what position, x = xM, is the magnitude of...Ch. 21 - (II) Estimate the electric field at a point 2.40...Ch. 21 - (II) The uniformly charged straight wire in...Ch. 21 - (II) Use your result from Problem 46 to find the...Ch. 21 - (II) Determine the direction and magnitude of the...Ch. 21 - (II) A thin rod bent into the shape of an arc of a...Ch. 21 - (III) A thin glass rod is a semicircle of radius...Ch. 21 - (III) Suppose a uniformly charged wire starts at...Ch. 21 - (III) Suppose in Example 2111 that x = 0.250m. Q =...Ch. 21 - (III) A thin rod of length carries a total charge...Ch. 21 - (III) Uniform plane of charge. Charge is...Ch. 21 - (III) Suppose the charge Q on the ring of Fig....Ch. 21 - (II) An electron with speed v0 = 27.5 106 m/s is...Ch. 21 - (II) An electron has an initial velocity...Ch. 21 - (II) An electron moving to the right at 7.5 105...Ch. 21 - (II) At what angle will the electrons in Example...Ch. 21 - (II) An electron is traveling through a uniform...Ch. 21 - (II) A positive charge q is placed at the center...Ch. 21 - (II) A dipole consists of charges +e and e...Ch. 21 - (II) The HCl molecule has a dipole moment of about...Ch. 21 - (II) Suppose both charges in Fig. 2145 (for a...Ch. 21 - (II) An electric dipole, of dipole moment p and...Ch. 21 - (III) Suppose a dipole p is placed in a nonuniform...Ch. 21 - (III) (a) Show that at points along the axis of a...Ch. 21 - How close must two electrons be if the electric...Ch. 21 - Given that the human body is mostly made of water,...Ch. 21 - A 3.0-g copper penny has a positive charge of 38...Ch. 21 - Measurements indicate that there is an electric...Ch. 21 - (a) The electric field near the Earths surface has...Ch. 21 - A water droplet of radius 0.018 mm remains...Ch. 21 - Estimate the net force between the CO group and...Ch. 21 - Suppose that electrical attraction, rather than...Ch. 21 - In a simple model of the hydrogen atom, the...Ch. 21 - A positive point charge Q1 = 2.5 105 C is fixed...Ch. 21 - When clothes are removed from a dryer, a 40-g sock...Ch. 21 - A small lead sphere is encased in insulating...Ch. 21 - A large electroscope is made with leaves that are...Ch. 21 - Dry air will break down and generate a spark if...Ch. 21 - Two pint charges, Q1 = 6.7 and Q2 = 1.8 C, are...Ch. 21 - Packing material made of pieces of foamed...Ch. 21 - One type of electric quadrupole consists of two...Ch. 21 - Suppose electrons enter a uniform electric field...Ch. 21 - An electron moves in a circle of radius r around a...Ch. 21 - Three very large square planes of charge are...Ch. 21 - A point charge (m = 1.0 g) at the end of an...Ch. 21 - Four equal positive point charges, each of charge...Ch. 21 - Two small, identical conducting spheres A and B...Ch. 21 - A point charge of mass 0.210 kg, and net charge...Ch. 21 - A one-dimensional row of positive ions, each with...Ch. 21 - (III) A thin ring-shaped object of radius a...Ch. 21 - (III) An 8.00 C charge is on the x axis of a...
Additional Science Textbook Solutions
Find more solutions based on key concepts
In the following diagram, the white spheres represent hydrogen atoms and the blue Sphere represent the nitrogen...
Chemistry: The Central Science (14th Edition)
Classify each process as exothermic or endothermic. a. dry ice subliming (changing from a solid directly to a g...
Introductory Chemistry (6th Edition)
SCIENTIFIC INQUIRY DRAW IT As a consequence of size alone, larger organisms tend to have larger brains than sm...
Campbell Biology (11th Edition)
Choose the best answer to each of the following. Explain your reasoning. Which of the following three kinds of ...
Cosmic Perspective Fundamentals
1. Define and distinguish incomplete penetrance and variable expressivity.
Genetic Analysis: An Integrated Approach (3rd Edition)
Fibrous connective tissue consists of ground substance and fibers that provide strength, support, and flexibili...
Human Biology: Concepts and Current Issues (8th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Two small charged spheres hang from cords of equal length l as shown in Fig. 16–64 and make small angles 01 and 02 with the vertical. (a) If Q1 = Q, Q2 = 2Q, and m1 = m2 = m, determine the ratio 01/02. (b) Estimate the distance between the spheres. FIGURE 16–64 Problem 52. Q1 Q2arrow_forwardProblem 3: (II) Three positive particles of equal charge, +17.0 μC, are located at the corners of an equilateral triangle of side 15.0 cm (Fig. 16-53). Calculate the magnitude and direction of the net force on each particle due to the other two. FIGURE 16-53 +17.0 μC 15.0 cm 15.0 cm Problem 12. +17.0 με 15.0 cm +17.0 μСarrow_forward(II) Two point charges, Q1 = -32 µC and Q2 = +45 µC, are separated by a distance of 12 cm. The electric field at the point P (see Fig. 16–57) is zero. How far from Qj is P? Q1 Q2 12 cm P -32 μC +45 µC FIGURE 16-57 Problem 32.arrow_forward
- (i) A negative point charge of 8.0 nC and a positive point charge of 2.5 nC are placed 9 cm apart. Calculate the magnitude of the force acting on one of these charges. (Note: take the value of the Coulomb's law constant to be 8.99 x 10⁹ Nm²/C²).arrow_forward(III) The two strands of the helix-shaped DNA molecule are held together by electrostatic forces as shown in Fig. 16–39. Assume that the net average charge (due to electron sharing) indicated on H and N atoms has magnitude 0.2e and on the indicated C and O atoms is 0.4e. Assume also that atoms on each molecule are separated by 1.0 × 10-10 m. Estimate the net force between (a) a thymine and an adenine; and (b) a cytosine and a guanine. For each bond (red dots) consider only the three atoms in a line (two atoms on one mol- ecule, one atom on the other). (c) Estimate the total force for a DNA molecule containing 10° pairs of such molecules. Assume half are A-T pairs and half are C-G pairs.arrow_forward(2.)(II) Two equal point charges Q are located on the y axis at y = a and y = -a. (a) What is the force on a charge q located at (x, 0)? (b) For what value of x is the force a maximum? Make a rough plot of F(x), the force as a func- tion of x. (c) When x > a, what is the form of F(x)? (Hint: Use the binomial expansion (1+z)" = 1 + nz for small z.)arrow_forward
- (II) Two point charges, Q₁ = -25 μC and Q2 = +45 μC, are separated by a distance of 12 cm. The electric field at the point P (see Fig. 21-58) is zero. How far from Q₁ is P? 21 -25 μC FIGURE 21-58 Problem 36. P X 12 cm 22 +45 μCarrow_forward(III) An electron (mass m = 9.11 × 10-31 kg) is acceler- ated in the uniform field É (E = 1.45 x 10ʻ N/C) between two thin parallel charged plates. The separation of the plates is E 1.60 cm. The electron is accelerated from rest near the negative plate and passes through a tiny hole in the positive plate, Fig. 16–61. (a) With what speed does it leave the hole? (b) Show that the gravitational force can be ignored. FIGURE 16–61 Problem 36. + + + + + +arrow_forward(II) The field just outside a 3.50-cm-radius metal ball is 3.75 X 102 N/Cand points toward the ball. What charge resides on the ball?arrow_forward
- (c) Calculate the electric field, E, at the origin for the three scenarios given. The magnitude 4760 of all charges is 3 C and the charges form squares with each side 1-m long. k = 8.99 x 10°Nm²/C². =arrow_forwardProblem 10: (II) Point a is 62 cm north of a -3.8 μC point charge, and point b is 88 cm west of the charge (Fig. 17-40). Determine (a) V₁ Va and (b) Еы - Еa (magnitude and direction). ⚫ a 62 cm FIGURE 17-40 b Q=−3.8 μC Problem 27. 88 cmarrow_forward(II) In Fig. 16–62, two objects, Og and O2, have charges +1.0 µC and – 2.0 µC, respectively, and a third object, O3, is electrically neutral. (a) What is the electric flux through the surface A1 that encloses all three objects? (b) What is the electric flux through the surface A, that encloses the third object only? A1 O3 0,•+1.0 µC A2 IGURE 16-62 02•-2.0 µC roblem 39.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
Physics Capacitor & Capacitance part 7 (Parallel Plate capacitor) CBSE class 12; Author: LearnoHub - Class 11, 12;https://www.youtube.com/watch?v=JoW6UstbZ7Y;License: Standard YouTube License, CC-BY