Physics for Scientists and Engineers with Modern Physics
4th Edition
ISBN: 9780131495081
Author: Douglas C. Giancoli
Publisher: Addison-Wesley
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 21, Problem 54P
(III) Uniform plane of charge. Charge is distributed uniformly over a large square plane of side ℓ, as shown in Fig. 21–68. The charge per unit area (C/m2) is σ. Determine the electric field at a point Ρ a distance z above the center of the plane, in the limit ℓ → ∞. [Hint: Divide the plane into long narrow strips of width dy, and use the result of Example 21–11; then sum the fields due to each strip to get the total field at P.]
FIGURE 21–68
Problem 54.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
(II) The 1/r² form of Coulomb's law implies the following:
(i) The electric field is zero at all points inside a uniformly
charged shell. (ii) The electric field outside a uniformly
charged sphere can be found by treating the charge as being
concentrated at the center. Use these facts to show that
within a uniformly charged sphere of radius R having a
volume charge density p C/m³, the field strength increases
linearly with the distance r from the center. That is, Ex r
for r < R.
(3) The purpose of this problem is to find the electric field of a ring of charge located in
the x-
z plane and has a diameter d. The ring has a total charge Q. To accomplish this, we
will break the ring of charge into point charges. All answers should be given in terms given
parameters and the coordinate 0. The field point, P, is located at (0, yo, 0).
(a) What is the charge dq of the point charges? [2pts]
(b) What is the value of f for the point charges? [3pts]
(c) What are the bounds of integration to find the total electric field? [2pts]
(d) If instead of a full ring, we have half of a ring, which (if any) of your answers to parts
(a) - (c) change? Which (if any) will stay the same? [3pts]
(II) The l/r2 form of Coulomb's law implies the following:
(i) The electric field is zero at all points inside a uniformly
charged shell. (ii) The electric field outside a uniformly
charged sphere can be found by treating the charge as being
concentrated at the center. Use these facts to show that
within a uniformly charged sphere of radius R having a
volume charge density p C/m3, the field strength increases
linearly with the distance r from the center. That is, E ex r
for r < R.
Chapter 21 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 21.5 - Return to the Chapter-Opening Question, page 559,...Ch. 21.5 - What is the magnitude of F12 (and F21) in Example...Ch. 21.5 - Determine the magnitude and direction of the net...Ch. 21.5 - (a) Consider two point charges of the same...Ch. 21.6 - Four charges of equal magnitude, but possibly...Ch. 21 - If you charge a pocket comb by rubbing it with a...Ch. 21 - Why does a shirt or blouse taken from a clothes...Ch. 21 - Explain why fog or rain droplets tend to form...Ch. 21 - A positively charged rod is brought close to a...Ch. 21 - Why does a plastic ruler that has been rubbed with...
Ch. 21 - Contrast the net charge on a conductor to the free...Ch. 21 - Figures 217 and 218 show how a charged rod placed...Ch. 21 - When an electroscope is charged, the two leaves...Ch. 21 - The form of Coulombs law is very similar to that...Ch. 21 - We are not normally aware of the gravitational or...Ch. 21 - Is the electric force a conservative force? Why or...Ch. 21 - What experimental observations mentioned in the...Ch. 21 - When a charged ruler attracts small pieces of...Ch. 21 - Explain why the test charges we use when measuring...Ch. 21 - When determining an electric field, must we use a...Ch. 21 - Draw the electric field lines surrounding two...Ch. 21 - Assume that the two opposite charges in Fig. 2134a...Ch. 21 - Consider the electric field at the three points...Ch. 21 - Why can electric field lines never cross?Ch. 21 - Given two point charges, Q and 2Q, a distance ...Ch. 21 - Suppose the ring of Fig. 2128 has a uniformly...Ch. 21 - Consider a small positive test charge located on...Ch. 21 - We wish to determine the electric field at a point...Ch. 21 - In what ways does the electron motion in Example...Ch. 21 - Describe the motion of the dipole shown in Fig....Ch. 21 - Explain why there can be a net force on an...Ch. 21 - (I) What is the magnitude of the electric force of...Ch. 21 - (I) How many electrons make up a charge of 38.0 C?Ch. 21 - (I) What is the magnitude of the force a + 25 C...Ch. 21 - (I) What is the repulsive electrical force between...Ch. 21 - (II) When an object such as a plastic comb is...Ch. 21 - (II) Two charged dust particles exert a force of...Ch. 21 - (II) Two charged spheres are 8.45 cm apart. They...Ch. 21 - (II) A person scuffing her feet on a wool rug on a...Ch. 21 - (II) What is the total charge of all the electrons...Ch. 21 - (II) Compare the electric force holding the...Ch. 21 - (II) Two positive point charges are a fixed...Ch. 21 - (II) Particles of charge +75, +48, and 85 C are...Ch. 21 - (II) Three charged particles are placed at the...Ch. 21 - (II) Two small nonconducting spheres have a total...Ch. 21 - (II) A charge of 4.15 mC is placed at each corner...Ch. 21 - (II) Two negative and two positive point charges...Ch. 21 - (II) A charge Q is transferred from an initially...Ch. 21 - (III) Two charges, Q0 and 4Q0, are a distance ...Ch. 21 - (III) Two positive charges +Q are affixed rigidly...Ch. 21 - (III) Two small charged spheres hang from cords of...Ch. 21 - (I) What are the magnitude and direction of the...Ch. 21 - (I) A proton is released in a uniform electric...Ch. 21 - (I) Determine the magnitude and direction of the...Ch. 21 - (I) A downward electric force of 8.4 N is exerted...Ch. 21 - (I) The electric force on a +4.20-C charge is...Ch. 21 - (I) What is the electric field at a point when the...Ch. 21 - (II) Draw, approximately, the electric field lines...Ch. 21 - (II) What is the electric field strength at a...Ch. 21 - (II) A long uniformly charged thread (linear...Ch. 21 - (II) The electric field midway between two equal...Ch. 21 - (II) Calculate the electric field at one corner of...Ch. 21 - (II) Calculate the electric field at the center of...Ch. 21 - (II) Determine the direction and magnitude of the...Ch. 21 - (II) Two point charges, Q1 = 25 and Q2 = +45 ,...Ch. 21 - (II) A very thin line of charge lies along the x...Ch. 21 - (II) (a) Determine the electric field E at the...Ch. 21 - (II) Draw, approximately, the electric field lines...Ch. 21 - (II) Two parallel circular rings of radius R have...Ch. 21 - (II) You are given two unknown point charges, Q1...Ch. 21 - (II) Use Coulombs law to determine the magnitude...Ch. 21 - (II) (a) Two equal charges Q are positioned at...Ch. 21 - (II) At what position, x = xM, is the magnitude of...Ch. 21 - (II) Estimate the electric field at a point 2.40...Ch. 21 - (II) The uniformly charged straight wire in...Ch. 21 - (II) Use your result from Problem 46 to find the...Ch. 21 - (II) Determine the direction and magnitude of the...Ch. 21 - (II) A thin rod bent into the shape of an arc of a...Ch. 21 - (III) A thin glass rod is a semicircle of radius...Ch. 21 - (III) Suppose a uniformly charged wire starts at...Ch. 21 - (III) Suppose in Example 2111 that x = 0.250m. Q =...Ch. 21 - (III) A thin rod of length carries a total charge...Ch. 21 - (III) Uniform plane of charge. Charge is...Ch. 21 - (III) Suppose the charge Q on the ring of Fig....Ch. 21 - (II) An electron with speed v0 = 27.5 106 m/s is...Ch. 21 - (II) An electron has an initial velocity...Ch. 21 - (II) An electron moving to the right at 7.5 105...Ch. 21 - (II) At what angle will the electrons in Example...Ch. 21 - (II) An electron is traveling through a uniform...Ch. 21 - (II) A positive charge q is placed at the center...Ch. 21 - (II) A dipole consists of charges +e and e...Ch. 21 - (II) The HCl molecule has a dipole moment of about...Ch. 21 - (II) Suppose both charges in Fig. 2145 (for a...Ch. 21 - (II) An electric dipole, of dipole moment p and...Ch. 21 - (III) Suppose a dipole p is placed in a nonuniform...Ch. 21 - (III) (a) Show that at points along the axis of a...Ch. 21 - How close must two electrons be if the electric...Ch. 21 - Given that the human body is mostly made of water,...Ch. 21 - A 3.0-g copper penny has a positive charge of 38...Ch. 21 - Measurements indicate that there is an electric...Ch. 21 - (a) The electric field near the Earths surface has...Ch. 21 - A water droplet of radius 0.018 mm remains...Ch. 21 - Estimate the net force between the CO group and...Ch. 21 - Suppose that electrical attraction, rather than...Ch. 21 - In a simple model of the hydrogen atom, the...Ch. 21 - A positive point charge Q1 = 2.5 105 C is fixed...Ch. 21 - When clothes are removed from a dryer, a 40-g sock...Ch. 21 - A small lead sphere is encased in insulating...Ch. 21 - A large electroscope is made with leaves that are...Ch. 21 - Dry air will break down and generate a spark if...Ch. 21 - Two pint charges, Q1 = 6.7 and Q2 = 1.8 C, are...Ch. 21 - Packing material made of pieces of foamed...Ch. 21 - One type of electric quadrupole consists of two...Ch. 21 - Suppose electrons enter a uniform electric field...Ch. 21 - An electron moves in a circle of radius r around a...Ch. 21 - Three very large square planes of charge are...Ch. 21 - A point charge (m = 1.0 g) at the end of an...Ch. 21 - Four equal positive point charges, each of charge...Ch. 21 - Two small, identical conducting spheres A and B...Ch. 21 - A point charge of mass 0.210 kg, and net charge...Ch. 21 - A one-dimensional row of positive ions, each with...Ch. 21 - (III) A thin ring-shaped object of radius a...Ch. 21 - (III) An 8.00 C charge is on the x axis of a...
Additional Science Textbook Solutions
Find more solutions based on key concepts
True or false? Some trails are considered vestigial because they existed long ago.
Biological Science (6th Edition)
MAKE CONNECTIONS Using what you know of gene expression in a cell, explain what causes the traits of parents (...
Campbell Biology (11th Edition)
Q1. Which wavelength of light has the highest frequency?
a) 10 nm
b) 10 mm
c) 1 nm
d) 1 mm
Chemistry: A Molecular Approach (4th Edition)
Using the pKa values listed in Table 15.1, predict the products of the following reactions:
Organic Chemistry (8th Edition)
Which type of cartilage is most plentiful in the adult body?
Anatomy & Physiology (6th Edition)
With what geologic feature are the earthquakes in the mid-Atlantic associated?
Applications and Investigations in Earth Science (9th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A very thin filament of uniform linear charge density "A" is located on the x-axis from x=0 to x=a. Prove that the components of the electric field at a point P on the y-axis, located at the distance "y" from the origin are:Ex = -k^(1/y-1/√/y² + a²) i, Ey = kha/y√/y² + a²)]arrow_forward(II) Two point charges, Q₁ = -25 μC and Q2 = +45 μC, are separated by a distance of 12 cm. The electric field at the point P (see Fig. 21-58) is zero. How far from Q₁ is P? 21 -25 μC FIGURE 21-58 Problem 36. P X 12 cm 22 +45 μCarrow_forwardPart A Uniform plane of charge. Charge is distributed uniformly over a large square plane of side l, as shown in the figure(Figure 1). The charge per unit Determine the electric field at a point Pa distance z above the center of the plane, in the limit l → 0. [Hint. Divide the plane into long narrow strips of width dy, and use the result of Example 21-11 in the textbook; then sum the fields due to each strip to get the total field at P] • (C/m²)is area is o. Express your answer in terms of the variables o, z, and appropriate constants. Figure < 1 of 1 ν ΑΣφ dE dE E = dE, P dy Submit Previous Answers Request Answer X Incorrect; Try Again; 3 attempts remainingarrow_forward
- (II) In Fig. 16–62, two objects, Og and O2, have charges +1.0 µC and – 2.0 µC, respectively, and a third object, O3, is electrically neutral. (a) What is the electric flux through the surface A1 that encloses all three objects? (b) What is the electric flux through the surface A, that encloses the third object only? A1 O3 0,•+1.0 µC A2 IGURE 16-62 02•-2.0 µC roblem 39.arrow_forward(c) As shown in Figure 3, there are 2 non-conducting rings each with uniform charge q1 and q2. Both rings have the same radius R. The separation distance between the rings is d = 4.0 R. Given q1 = 10.0 nC, q2 = -20.0 nC, R= 0.50 m, d= 1.50 m. Calculate the net electric field at point P. Ring 1 Ring 2 12 P R R -R→| d Figure 3arrow_forward(b): A conducting sphere of radius 1.0cm carries a charge which is uniformly distributed on its surface. The surface charged density is 0.5C/cm², Calculate the electric field at the surface of sphere. widarrow_forward
- (c) Calculate the electric field, E, at the origin for the three scenarios given. The magnitude 4760 of all charges is 3 C and the charges form squares with each side 1-m long. k = 8.99 x 10°Nm²/C². =arrow_forward(III) A point charge Q rests at the center of an uncharged thin spherical conducting shell. (See Fig. 16–34.) What is the electric field E as a function of r (a) for r less than the inner radius of the shell, (b) inside the shell, and(c) beyond the shell? (d) How does the shell affect the field due to Q alone? How does the charge Q affect the shell?arrow_forward(i) Derive the expression for electric field at a point on the equatorial line of an electric dipole. (ii) Depict the orientation of the dipole in (a) stable, (b) unstable equilibrium in a uniform electric field.arrow_forward
- 2) An insulating sphere of radius a carries a net positive charge 5q, uniformly distributed throughout its volume as a volume charge density p. Concentric with this sphere is a conducting spherical shell with inner radius b and outer radius c, and having a net charge -3q, as shown in Figure. Find the electric field in the regions (a) 1, (b) 2, (c) 3, and (d) 4. -3q 5q → Insulator a b Conductorarrow_forward47. (III) A flat slab of nonconducting material has thickness 2d, which is small compared to its height and breadth. Define the x axis to be along the direction of the slab's thickness with the origin at the center of the slab (Fig. 22-41). If the slab carries a volume charge density PE(x) the region -d < x <0 and PE(x) = +po in the region 0 < xs +d, determine the electric field E as a function of x in the regions (a) outside the slab, = -Po in (b) 0 < x < +d, and (c) -d s x < 0. Let po be a positive constant. - +d FIGURE 22-41arrow_forward(iv)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
Physics Capacitor & Capacitance part 7 (Parallel Plate capacitor) CBSE class 12; Author: LearnoHub - Class 11, 12;https://www.youtube.com/watch?v=JoW6UstbZ7Y;License: Standard YouTube License, CC-BY