Physics for Scientists and Engineers with Modern Physics
4th Edition
ISBN: 9780131495081
Author: Douglas C. Giancoli
Publisher: Addison-Wesley
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 21, Problem 7P
(II) Two charged spheres are 8.45 cm apart. They are moved, and the force on each of them is found to have been tripled. How far apart are they now?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
(II) Two charged dust particles exert a force of 4.2 x 10-2 Non each other. What will be the force if they are moved sothey are only one-eighth as far apart?
(II) A charge of 6.00 mC is placed at each corner of a
square 0.100 m on a side. Determine the magnitude and
direction of the force on each charge.
(II) Two charges of the same magnitude and opposite signs (q1 = 4 nC = −q2) are separated by a distance 2d, where d = 1 cm. Determine the force resultant electric force acting on a charge q3 = 9 nC when it is at point
A, B,C, and D.
Answer only if you find at all the points
Chapter 21 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 21.5 - Return to the Chapter-Opening Question, page 559,...Ch. 21.5 - What is the magnitude of F12 (and F21) in Example...Ch. 21.5 - Determine the magnitude and direction of the net...Ch. 21.5 - (a) Consider two point charges of the same...Ch. 21.6 - Four charges of equal magnitude, but possibly...Ch. 21 - If you charge a pocket comb by rubbing it with a...Ch. 21 - Why does a shirt or blouse taken from a clothes...Ch. 21 - Explain why fog or rain droplets tend to form...Ch. 21 - A positively charged rod is brought close to a...Ch. 21 - Why does a plastic ruler that has been rubbed with...
Ch. 21 - Contrast the net charge on a conductor to the free...Ch. 21 - Figures 217 and 218 show how a charged rod placed...Ch. 21 - When an electroscope is charged, the two leaves...Ch. 21 - The form of Coulombs law is very similar to that...Ch. 21 - We are not normally aware of the gravitational or...Ch. 21 - Is the electric force a conservative force? Why or...Ch. 21 - What experimental observations mentioned in the...Ch. 21 - When a charged ruler attracts small pieces of...Ch. 21 - Explain why the test charges we use when measuring...Ch. 21 - When determining an electric field, must we use a...Ch. 21 - Draw the electric field lines surrounding two...Ch. 21 - Assume that the two opposite charges in Fig. 2134a...Ch. 21 - Consider the electric field at the three points...Ch. 21 - Why can electric field lines never cross?Ch. 21 - Given two point charges, Q and 2Q, a distance ...Ch. 21 - Suppose the ring of Fig. 2128 has a uniformly...Ch. 21 - Consider a small positive test charge located on...Ch. 21 - We wish to determine the electric field at a point...Ch. 21 - In what ways does the electron motion in Example...Ch. 21 - Describe the motion of the dipole shown in Fig....Ch. 21 - Explain why there can be a net force on an...Ch. 21 - (I) What is the magnitude of the electric force of...Ch. 21 - (I) How many electrons make up a charge of 38.0 C?Ch. 21 - (I) What is the magnitude of the force a + 25 C...Ch. 21 - (I) What is the repulsive electrical force between...Ch. 21 - (II) When an object such as a plastic comb is...Ch. 21 - (II) Two charged dust particles exert a force of...Ch. 21 - (II) Two charged spheres are 8.45 cm apart. They...Ch. 21 - (II) A person scuffing her feet on a wool rug on a...Ch. 21 - (II) What is the total charge of all the electrons...Ch. 21 - (II) Compare the electric force holding the...Ch. 21 - (II) Two positive point charges are a fixed...Ch. 21 - (II) Particles of charge +75, +48, and 85 C are...Ch. 21 - (II) Three charged particles are placed at the...Ch. 21 - (II) Two small nonconducting spheres have a total...Ch. 21 - (II) A charge of 4.15 mC is placed at each corner...Ch. 21 - (II) Two negative and two positive point charges...Ch. 21 - (II) A charge Q is transferred from an initially...Ch. 21 - (III) Two charges, Q0 and 4Q0, are a distance ...Ch. 21 - (III) Two positive charges +Q are affixed rigidly...Ch. 21 - (III) Two small charged spheres hang from cords of...Ch. 21 - (I) What are the magnitude and direction of the...Ch. 21 - (I) A proton is released in a uniform electric...Ch. 21 - (I) Determine the magnitude and direction of the...Ch. 21 - (I) A downward electric force of 8.4 N is exerted...Ch. 21 - (I) The electric force on a +4.20-C charge is...Ch. 21 - (I) What is the electric field at a point when the...Ch. 21 - (II) Draw, approximately, the electric field lines...Ch. 21 - (II) What is the electric field strength at a...Ch. 21 - (II) A long uniformly charged thread (linear...Ch. 21 - (II) The electric field midway between two equal...Ch. 21 - (II) Calculate the electric field at one corner of...Ch. 21 - (II) Calculate the electric field at the center of...Ch. 21 - (II) Determine the direction and magnitude of the...Ch. 21 - (II) Two point charges, Q1 = 25 and Q2 = +45 ,...Ch. 21 - (II) A very thin line of charge lies along the x...Ch. 21 - (II) (a) Determine the electric field E at the...Ch. 21 - (II) Draw, approximately, the electric field lines...Ch. 21 - (II) Two parallel circular rings of radius R have...Ch. 21 - (II) You are given two unknown point charges, Q1...Ch. 21 - (II) Use Coulombs law to determine the magnitude...Ch. 21 - (II) (a) Two equal charges Q are positioned at...Ch. 21 - (II) At what position, x = xM, is the magnitude of...Ch. 21 - (II) Estimate the electric field at a point 2.40...Ch. 21 - (II) The uniformly charged straight wire in...Ch. 21 - (II) Use your result from Problem 46 to find the...Ch. 21 - (II) Determine the direction and magnitude of the...Ch. 21 - (II) A thin rod bent into the shape of an arc of a...Ch. 21 - (III) A thin glass rod is a semicircle of radius...Ch. 21 - (III) Suppose a uniformly charged wire starts at...Ch. 21 - (III) Suppose in Example 2111 that x = 0.250m. Q =...Ch. 21 - (III) A thin rod of length carries a total charge...Ch. 21 - (III) Uniform plane of charge. Charge is...Ch. 21 - (III) Suppose the charge Q on the ring of Fig....Ch. 21 - (II) An electron with speed v0 = 27.5 106 m/s is...Ch. 21 - (II) An electron has an initial velocity...Ch. 21 - (II) An electron moving to the right at 7.5 105...Ch. 21 - (II) At what angle will the electrons in Example...Ch. 21 - (II) An electron is traveling through a uniform...Ch. 21 - (II) A positive charge q is placed at the center...Ch. 21 - (II) A dipole consists of charges +e and e...Ch. 21 - (II) The HCl molecule has a dipole moment of about...Ch. 21 - (II) Suppose both charges in Fig. 2145 (for a...Ch. 21 - (II) An electric dipole, of dipole moment p and...Ch. 21 - (III) Suppose a dipole p is placed in a nonuniform...Ch. 21 - (III) (a) Show that at points along the axis of a...Ch. 21 - How close must two electrons be if the electric...Ch. 21 - Given that the human body is mostly made of water,...Ch. 21 - A 3.0-g copper penny has a positive charge of 38...Ch. 21 - Measurements indicate that there is an electric...Ch. 21 - (a) The electric field near the Earths surface has...Ch. 21 - A water droplet of radius 0.018 mm remains...Ch. 21 - Estimate the net force between the CO group and...Ch. 21 - Suppose that electrical attraction, rather than...Ch. 21 - In a simple model of the hydrogen atom, the...Ch. 21 - A positive point charge Q1 = 2.5 105 C is fixed...Ch. 21 - When clothes are removed from a dryer, a 40-g sock...Ch. 21 - A small lead sphere is encased in insulating...Ch. 21 - A large electroscope is made with leaves that are...Ch. 21 - Dry air will break down and generate a spark if...Ch. 21 - Two pint charges, Q1 = 6.7 and Q2 = 1.8 C, are...Ch. 21 - Packing material made of pieces of foamed...Ch. 21 - One type of electric quadrupole consists of two...Ch. 21 - Suppose electrons enter a uniform electric field...Ch. 21 - An electron moves in a circle of radius r around a...Ch. 21 - Three very large square planes of charge are...Ch. 21 - A point charge (m = 1.0 g) at the end of an...Ch. 21 - Four equal positive point charges, each of charge...Ch. 21 - Two small, identical conducting spheres A and B...Ch. 21 - A point charge of mass 0.210 kg, and net charge...Ch. 21 - A one-dimensional row of positive ions, each with...Ch. 21 - (III) A thin ring-shaped object of radius a...Ch. 21 - (III) An 8.00 C charge is on the x axis of a...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Why is living epithelial tissue limited to a certain thickness?
Human Anatomy & Physiology (2nd Edition)
Distinguish between the concepts of sexual differentiation and sex determination.
Concepts of Genetics (12th Edition)
10.71 Identify each of the following as an acid or a base: (10.1)
H2SO4
RbOH
Ca(OH)2
HI
...
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
What two body structures contain flexible elastic cartilage?
Anatomy & Physiology (6th Edition)
Pus is both a sign of infection and an indicator of immune defenses in action. Explain.
Campbell Biology (11th Edition)
Distinguish between microevolution, speciation, and macroevolution.
Campbell Essential Biology (7th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- How many coulombs of positive charge are there in 4.00 kg of plutonium given its atomic mass is 244 and that each plutonium atom has 94 protons?arrow_forwardA proton is fired from very far away directly at a fixed particle with charge q = 1.28 1018 C. If the initial speed of the proton is 2.4 105 m/s, what is its distance of closest approach to the fixed particle? The mass of a proton is 1.67 1027 kg.arrow_forwardCalculate the angular velocity of an electron orbiting a proton in the hydrogen atom, given the radius of the orbit is 0.5301010 m. You may assume that the proton is stationary and the centripetal force is supplied by Coulomb attraction.arrow_forward
- Three charged particles are located at the corners of an equilateral triangle as shown in Figure P19.9. Calculate the total electric force on the 7.00-C charge.arrow_forwardThree identical conducting spheres are fixed along a single line. The middle sphere is equidistant from the other two so that the center-to-center distance between the middle sphere and either of the other two is 0.125 m. Initially, only the middle sphere is charged, with qmiddle = +35.6 nC. The middle sphere is later connected by a conducting wire to the sphere on the left. The wire is removed and then used to connect the middle sphere to the sphere on the right. The wire is again removed. a. C What is the charge on each sphere? b. C Which sphere experiences the greatest electrostatic force? c. N What is the magnitude of that force?arrow_forwardWhat can you say about two charges q1and q2, if the electric field one-fourth of the way from q1to q2is zero?arrow_forward
- (i) A negative point charge of 8.0 nC and a positive point charge of 2.5 nC are placed 9 cm apart. Calculate the magnitude of the force acting on one of these charges. (Note: take the value of the Coulomb's law constant to be 8.99 x 10⁹ Nm²/C²).arrow_forward(II) Two small charged spheres are 6.52 cm apart. They aremoved, and the force each exerts on the other is found tohave tripled. How far apart are they now?arrow_forward(3) If two equal charges, each of 1 C, were separated in air by a distance of 1 km, what would be the force between them? k = 9.0 × 10^9 Nm^2/C^2 A. 9.0 mNB. 9.0 kNC. 9.0 MND. 9.0 GNE. None of the Abovearrow_forward
- Two charged spheres are 8.45cm apart they are moved and the force on each of them is found to have been tripled how far apart are they now ?arrow_forward(II) A charge of 6.15 mC is placed at each corner of a square0.100 m on a side. Determine the magnitude and directionof the force on each charge.arrow_forward(6.II) Two small identical metal spheres are 3 cm apart and attract each other with a force of 150 N. They are momen- tarily connected by a wire. (a) Find the original charges if they now repel each other with a force of 10 N. (Assume the charge on each sphere is uniformly distributed.) (b) Find the original charges if the magnitude of the repulsive force is 150 N.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
8.02x - Lect 1 - Electric Charges and Forces - Coulomb's Law - Polarization; Author: Lectures by Walter Lewin. They will make you ♥ Physics.;https://www.youtube.com/watch?v=x1-SibwIPM4;License: Standard YouTube License, CC-BY