College Physics
OER 2016 Edition
ISBN: 9781947172173
Author: OpenStax
Publisher: OpenStax College
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 21, Problem 4TP
To determine
The power dissipated in
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 21 Solutions
College Physics
Ch. 21 - Prob. 1CQCh. 21 - Prob. 2CQCh. 21 - Prob. 3CQCh. 21 - Prob. 4CQCh. 21 - Prob. 5CQCh. 21 - Knowing that the severity of a shock depends on...Ch. 21 - Would your headlights dim when you start your...Ch. 21 - Some strings of holiday lights are wired in series...Ch. 21 - If two household lightbulbs rated 60 W and 100 W...Ch. 21 - Suppose you are doing a physics lab that asks you...
Ch. 21 - Before World War II, some radios got power through...Ch. 21 - Some light bulbs have three power settings (not...Ch. 21 - Is every emf a potential difference? Is every...Ch. 21 - Prob. 14CQCh. 21 - Given a battery, an assortment of resistors, and a...Ch. 21 - Two different 12-V automobile batteries on a store...Ch. 21 - What are the advantages and disadvantages of...Ch. 21 - Semitractor trucks use four large 12-V batteries....Ch. 21 - Prob. 19CQCh. 21 - Prob. 20CQCh. 21 - Prob. 21CQCh. 21 - Prob. 22CQCh. 21 - Prob. 23CQCh. 21 - Prob. 24CQCh. 21 - Suppose you are using a multimeter (one designed...Ch. 21 - Prob. 26CQCh. 21 - Prob. 27CQCh. 21 - Why can a null measurement be more accurate than...Ch. 21 - If a potentiometer is used to measure cell emfs on...Ch. 21 - Regarding the units involved in the relationship t...Ch. 21 - The RC time constant in heart defibrillation is...Ch. 21 - When making an ECG measurement, it is important to...Ch. 21 - Prob. 33CQCh. 21 - Prob. 34CQCh. 21 - Prob. 35CQCh. 21 - Prob. 36CQCh. 21 - A long, inexpensive extension cord is connected...Ch. 21 - Prob. 38CQCh. 21 - Prob. 39CQCh. 21 - (a) What is the resistance often 275-O resistors...Ch. 21 - (a) What is the resistance of a 1.00 102-O, a...Ch. 21 - What are the largest and smallest resistances you...Ch. 21 - An 1800-W toaster, a 1400-W electric frying pan,...Ch. 21 - Your car’s 30.0-W headlight and 2.40-kW starter...Ch. 21 - (a) Given a48.0-V battery and 24.0-O and 96.0-O...Ch. 21 - Referring to the example combining series and...Ch. 21 - Referring to Figure 21.6: (a) Calculate P3 and...Ch. 21 - Refer to Figure 21.7 and the discussion of lights...Ch. 21 - Prob. 10PECh. 21 - Show that if two resistors R1and R2are combined...Ch. 21 - Unreasonable Results Two resistors, one having a...Ch. 21 - Unreasonable Results Two resistors, one having a...Ch. 21 - Standard automobile batteries have six lead-acid...Ch. 21 - Car bon-zinc dry cells (sometimes referred to as...Ch. 21 - What is the output voltage of a 3.0000-V lithium...Ch. 21 - (a) What is the terminal voltage of a large 1.54-V...Ch. 21 - What is the internal resistance of an automobile...Ch. 21 - (a) Find the terminal voltage of a 12.0-V...Ch. 21 - A car battery with a 12-V emf and an internal...Ch. 21 - The hot resistance of a flashlight bulb is 2.30 ,...Ch. 21 - The label or a portable radio recommends the use...Ch. 21 - An automobile starter motor has an equivalent...Ch. 21 - A child’s electronic toy is supplied by three...Ch. 21 - (a) What is the internal resistance of a voltage...Ch. 21 - A person with body resistance between his hands of...Ch. 21 - Electric fish generate current with biological...Ch. 21 - Integrated Concepts A 12.0-V emf automobile...Ch. 21 - Unreasonable Results A 1.58-V alkaline cell with a...Ch. 21 - Unreasonable Results (a) What is the internal...Ch. 21 - Prob. 31PECh. 21 - Prob. 32PECh. 21 - Verify the second equation in Example 21.5 by...Ch. 21 - Verify the third equation in Example 21.5 by...Ch. 21 - Prob. 35PECh. 21 - Prob. 36PECh. 21 - Prob. 37PECh. 21 - Prob. 38PECh. 21 - Solve Example 21.5, but use loop abcdefgha instead...Ch. 21 - Prob. 40PECh. 21 - Prob. 41PECh. 21 - What is the sensitivity of the galvanometer (that...Ch. 21 - What is the sensitivity of the galvanometer (that...Ch. 21 - Find the resistance that must be placed in series...Ch. 21 - Find the resistance that must be placed in series...Ch. 21 - Find the resistance that must be placed in series...Ch. 21 - Find the resistance that must be placed in...Ch. 21 - Find the resistance that must be placed in series...Ch. 21 - Find the resistance that must be placed in...Ch. 21 - Prob. 50PECh. 21 - Suppose you measure the terminal voltage of a...Ch. 21 - A certain ammeter has a resistance of 5.00X10-5 ...Ch. 21 - A 1,00-?O voltmeter is placed in parallel with a...Ch. 21 - A 0.0200- ammeter is placed in series with a...Ch. 21 - Unreasonable Results Suppose you have a 40.0-...Ch. 21 - Unreasonable Results (a) What resistance would you...Ch. 21 - What is the emf x of a cell being measured in a...Ch. 21 - Calculate the emfx of a dry cell for which a...Ch. 21 - When an unknown resistance Rxis placed in a...Ch. 21 - To what value must you adjust R3to balance a...Ch. 21 - (a) What is the unknown emfx in a potentiometer...Ch. 21 - Suppose you want to measure resistances in the...Ch. 21 - The timing device in an automobile’s intermittent...Ch. 21 - A heart pacemaker fires 72 times a minute, each...Ch. 21 - The duration of a photographic flash is related to...Ch. 21 - A 2.00- and a 7.50-F capacitor can be connected in...Ch. 21 - After two time constants, what percentage of the...Ch. 21 - A 500- resistor, an uncharged 1.50-F capacitor and...Ch. 21 - A heart defibrillator being used on a patient has...Ch. 21 - An ECG monitor must have an RC time constant less...Ch. 21 - Prob. 71PECh. 21 - Using the exact exponential treatment, find how...Ch. 21 - Using the exact exponential treatment, find how...Ch. 21 - Integrated Concepts If you wish to take a picture...Ch. 21 - Integrated Concepts A flashing lamp in a Christmas...Ch. 21 - Integrated Concepts A 160F capacitor charged to...Ch. 21 - Unreasonable Results (a) Calculate the capacitance...Ch. 21 - Construct Your Own Problem Consider a camera's...Ch. 21 - Construe! Your Own Problem Consider a rechargeable...Ch. 21 - Prob. 1TPCh. 21 - Prob. 2TPCh. 21 - Prob. 3TPCh. 21 - Prob. 4TPCh. 21 - Prob. 5TPCh. 21 - Prob. 6TPCh. 21 - Prob. 7TPCh. 21 - Prob. 8TP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Consider the circuit shown in Figure P28.21 on page 860. (a) Find the voltage across the 3.00-0 resistor, (b) Find the current in the 3.00-12 resistor.arrow_forwardA 20.00-ohm; 5.00-watt resistor is placed in series with a power supply, (a) What is the maxim tun voltage that can be applied to the resistor without hanniug the resistor? (b) What would be the current through the resistor?arrow_forwardIntegrated Concepts A 12.0-V emf automobile battery has a terminal voltage of 16.0 V when being charged by a current of 10.0 A. (a) What is the battery’s internal resistance? (b) What power is dissipated inside the battery? (c) At what rate (in °C/min ) will its temperature increase if its mass is 20.0 kg and it has a specific heat of 0.300 kcal/kg. °C, assuming no heat escapes?arrow_forward
- Integrated Concepts (a) Assuming 95.0% efficiency for the conversion of electrical power by the motor, what current must the 12.0-V batteries of a 750-kg electric car be able to supply: (a) To accelerate from rest to 25.0 m/s in 1.00 min? (b) To climb a 2.00 102-m- high hill in 2.00 min at a constant 25.0-m/s speed while exerting 5.00 102 N of force to overcome air resistance and friction? (c) To travel at a constant 25.0-m/s speed, exerting a 5.00 102 N force to overcome air resistance and friction? See Figure 20.44.arrow_forwardFigure P18.26 shows a voltage divider, a circuit used to obtain a desired voltage Vout from a source voltage . Determine the required value of R2 if = 5.00 V, Vout = 1.50 V and R1 = 1.00 103 (Hint: Use Kirchhoff's loop rule, substituting Vout = IR2, to find the current. Then solve Ohms law for R2. Figure P18.26arrow_forward(a) A defibrillator sends a 6.00-A current through the chest of a patient by applying a 10,000-V potential as in the figure below. What is the resistance of the path? (b) The defibrillator paddles make contact with the patient through a conducting gel that greatly reduces the path resistance. Discuss the difficulties that would ensue if a larger voltage were used to produce the same current through the patient, but with the path having perhaps 50 times the resistance. (Hint: The current must be about the same, so a higher voltage would imply greater power. Use this equation for power: P=I2 RP = .)arrow_forward
- A 500- resistor, an uncharged 1.50-F capacitor and a 6.16-V emf are connected in series, (a) What is the initial current? (b) What is the RC time constant? (c) What is the current after one time constant? (d) What is the voltage on the capacitor after one time constant?arrow_forwardA car battery with a 12-V emf and an internal resistance of 0.050 is being charged with a current of 60 A. Note that in this process the battery is being charged. (a) What is the potential difference across its terminals? (b) At what rate is thermal energy being dissipated in the battery? (c) At what rate is electric energy being converted to chemical energy? (d) What are the answers to (a) and (b) when the battery is used to supply 60 A to the starter motor?arrow_forwardThe- pair of capacitors in Figure P28.63 are fully charged by a 12.0-V battery. The battery is disconnected, and the switch is then closed. Alter 1.00 ms has elapsed, (a) how much charge remains 011 the 3.00-F capacitor? (b) How much charge remains on the 2.00-F capacitor? (c) What is the current in the resistor at this time?arrow_forward
- A typical cell phone consumes an average of about 1.00 W of electrical power and operates on 3.80 V. (a) What average current does the phone draw from its battery? (b) Calculate the energy stored in a fully charged battery if the phone requires charging after 5.00 hours of use.arrow_forwardA homemade capacitor is constructed of 2 sheets of aluminum foil with an area of 2.00 square meters, separated by paper, 0.05 mm thick, of the same area and a dielectric constant of 3.7. The homemade capacitor is connected in series with a 100,00- resistor, a switch, and a 6.00-V voltage source, (a) What is the RC time constant of the circuit? (b) What is the initial current through the circuit, when the switch is closed? (c) How long does it take the current to reach one third of its initial value?arrow_forwardA circuit contains a D-cell battery, a switch, a 20- resistor, and three 20-mF capacitors. The capacitors are connected in parallel, and the parallel connection of capacitors are connected in series with the switch, the resistor and the battery, (a) What is die equivalent capacitance of the circuit? (b) What is the KC time constant? (c) How long before the current decreases to 50% of the initial value once the switch is closed?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Ohm's law Explained; Author: ALL ABOUT ELECTRONICS;https://www.youtube.com/watch?v=PV8CMZZKrB4;License: Standard YouTube License, CC-BY