Bundle: Principles of Physics: A Calculus-Based Text, 5th + WebAssign Printed Access Card for Serway/Jewett's Principles of Physics: A Calculus-Based Text, 5th Edition, Multi-Term
5th Edition
ISBN: 9781133422013
Author: Raymond A. Serway; John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 21, Problem 4CQ
Referring to Figure CQ21.4, describe what happens to the light-bulb after the switch is closed. Assume the capacitor has a large capacitance and is initially uncharged. Also assume the light illuminates when connected directly across the battery terminals.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The capacitor in the circuit is initially uncharged. The switch closes at time t = 0.
R
4.7 kQ
The potential across the capacitor as a function of time is given below.
Voltage (V)
-1아
0.002
0.004
0.006
0.008
Time (s)
Use the graph to estimate the capacitance.
A capacitor, C is connected across an emf given by:
v(t) = Vo sin(wt)
%3D
Write an expression for the current through the capacitor.
I(t) =
%3D
A parallel-plate capacitor with plate separation d is connected to a source of emf that places a time-dependent voltage V(t) across its circular plates of radius r0 and area A = πr0 2 (see below).
(a) Write an expression for the time rate of change ofenergy inside the capacitor in terms of V(t) and dV(t)/dt.(b) Assuming that V(t) is increasing with time, identify thedirections of the electric field lines inside the capacitor andof the magnetic field lines at the edge of the region betweenthe plates, and then the direction of the Poynting vectorS →at this location.(c) Obtain expressions for the time dependence of E(t), forB(t) from the displacement current, and for the magnitudeof the Poynting vector at the edge of the region between theplates.(d) From S → , obtain an expression in terms of V(t) anddV(t)/dt for the rate at which electromagnetic field energyenters the region between the plates.(e) Compare the results of parts (a) and (d) and explain therelationship between them.
Chapter 21 Solutions
Bundle: Principles of Physics: A Calculus-Based Text, 5th + WebAssign Printed Access Card for Serway/Jewett's Principles of Physics: A Calculus-Based Text, 5th Edition, Multi-Term
Ch. 21.1 - Consider positive and negative charges moving...Ch. 21.2 - Prob. 21.2QQCh. 21.2 - When does an incandescent lightbulb carry more...Ch. 21.5 - For the two incandescent lightbulbs shown in...Ch. 21.7 - Prob. 21.5QQCh. 21.7 - With the switch in the circuit of Figure 21.18a...Ch. 21.7 - Prob. 21.7QQCh. 21.9 - Consider the circuit in Figure 21.29 and assume...Ch. 21 - If the terminals of a battery with zero internal...Ch. 21 - Wire B has twice the length and twice the radius...
Ch. 21 - The current-versus-voltage behavior of a certain...Ch. 21 - Prob. 4OQCh. 21 - A potential difference of 1.00 V is maintained...Ch. 21 - Prob. 6OQCh. 21 - A metal wire of resistance R is cut into three...Ch. 21 - The terminals of a battery are connected across...Ch. 21 - Prob. 9OQCh. 21 - Two conducting wires A and B of the same length...Ch. 21 - When resistors with different resistances are...Ch. 21 - When operating on a 120-V circuit, an electric...Ch. 21 - Prob. 13OQCh. 21 - Prob. 14OQCh. 21 - In the circuit shown in Figure OQ21.15, each...Ch. 21 - Prob. 1CQCh. 21 - Prob. 2CQCh. 21 - Prob. 3CQCh. 21 - Referring to Figure CQ21.4, describe what happens...Ch. 21 - When the potential difference across a certain...Ch. 21 - Use the atomic theory of matter to explain why the...Ch. 21 - Prob. 7CQCh. 21 - (a) What advantage does 120-V operation offer over...Ch. 21 - Prob. 9CQCh. 21 - Prob. 10CQCh. 21 - If you were to design an electric heater using...Ch. 21 - Prob. 12CQCh. 21 - Prob. 13CQCh. 21 - Prob. 14CQCh. 21 - Why is it possible for a bird to sit on a...Ch. 21 - Prob. 1PCh. 21 - Prob. 2PCh. 21 - The quantity of charge q (in coulombs) that has...Ch. 21 - Prob. 4PCh. 21 - Prob. 5PCh. 21 - Figure P21.6 represents a section of a conductor...Ch. 21 - Prob. 7PCh. 21 - A 0.900-V potential difference is maintained...Ch. 21 - Prob. 9PCh. 21 - A lightbulb has a resistance of 240 when...Ch. 21 - Prob. 11PCh. 21 - Prob. 12PCh. 21 - While taking photographs in Death Valley on a day...Ch. 21 - Prob. 14PCh. 21 - If the current carried by a conductor is doubled,...Ch. 21 - Prob. 16PCh. 21 - Prob. 17PCh. 21 - Prob. 18PCh. 21 - Prob. 19PCh. 21 - Prob. 20PCh. 21 - Prob. 21PCh. 21 - Prob. 22PCh. 21 - Prob. 23PCh. 21 - Prob. 24PCh. 21 - A 100-W lightbulb connected to a 120-V source...Ch. 21 - Prob. 26PCh. 21 - Prob. 27PCh. 21 - Prob. 28PCh. 21 - A toaster is rated at 600 W when connected to a...Ch. 21 - Prob. 30PCh. 21 - Prob. 31PCh. 21 - Review. A well-insulated electric water heater...Ch. 21 - A battery has an emf of 15.0 V. The terminal...Ch. 21 - Two 1.50-V batterieswith their positive terminals...Ch. 21 - An automobile battery has an emf of 12.6 V and an...Ch. 21 - Prob. 36PCh. 21 - Prob. 37PCh. 21 - Prob. 38PCh. 21 - Consider the circuit shown in Figure P21.39. Find...Ch. 21 - Four resistors are connected to a battery as shown...Ch. 21 - Three 100- resistors are connected as shown in...Ch. 21 - Prob. 42PCh. 21 - Calculate the power delivered to each resistor in...Ch. 21 - Prob. 44PCh. 21 - The ammeter shown in Figure P21.45 reads 2.00 A....Ch. 21 - Prob. 46PCh. 21 - The circuit shown in Figure P21.47 is connected...Ch. 21 - In Figure P21.47, show how to add just enough...Ch. 21 - Taking R = 1.00 k and = 250 V in Figure P21.49,...Ch. 21 - For the circuit shown in Figure P21.50, we wish to...Ch. 21 - In the circuit of Figure P21.51, determine (a) the...Ch. 21 - Jumper cables are connected from a fresh battery...Ch. 21 - Prob. 53PCh. 21 - Prob. 54PCh. 21 - Prob. 55PCh. 21 - Prob. 56PCh. 21 - In the circuit of Figure P21.57, the switch S has...Ch. 21 - Prob. 58PCh. 21 - The circuit in Figure P21.59 has been connected...Ch. 21 - Assume that global lightning on the Earth...Ch. 21 - Prob. 61PCh. 21 - Prob. 62PCh. 21 - Prob. 63PCh. 21 - Prob. 64PCh. 21 - Prob. 65PCh. 21 - An oceanographer is studying how the ion...Ch. 21 - The values of the components in a simple series RC...Ch. 21 - Prob. 68PCh. 21 - Prob. 69PCh. 21 - Prob. 70PCh. 21 - The student engineer of a campus radio station...Ch. 21 - Prob. 72PCh. 21 - A battery has an emf and internal resistance r. A...Ch. 21 - Prob. 74PCh. 21 - Prob. 75PCh. 21 - Prob. 76PCh. 21 - Prob. 77P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- In the Electric Field Mapping experiment, suppose you used two electrodes separated by a distance L and a power supply with emf Vo Then you measure V for points along a straight line perpendicular to the electrodes, joining the centers of the positive and negative electrodes. You connect the positive terminal of the voltmeter to the anode and the negative terminal to the pointer placed at a point in the tray along the line joining the two electrodes, a distance d from the anode. Which of the following is true? O a. There is a linear relation between Vo and L. b. The slope of V vs. d is negative. C. The slope of V vs. d is positive and depends on Vo only. Od. The positive terminal negative terminal to the point between the two electrodes. the voltmeter should be connected to the cathode and the O e. It is important during the experiment to keep L and Vo fixed.arrow_forwardA circuit has a 18.8 pF capacitor, a 39.6 pF capacitor and a 33.1 pf capacitor in series with each other. What is the equivalent capacitance (in pico-Farads) of these three capacitors?arrow_forwardIn the figure, suppose the switch has been closed for a length of time sufficiently long for the capacitor to become fully charged. For this circuit, R1 = 12.0 kΩ, R2 = 15.0 kΩ, R3 = 3.000 kΩ, C = 10.0 μF , and emf = 9.00 V. Find (d) the potential differance across R2. (e) the charge on the capacitor.arrow_forward
- At the time the switch is closed in the circuit, the voltage across the paralleled capacitors is 50 V and the voltage on the C₁ capacitor is 40 V.(Figure 1) Take that C₁ - 250 nF C₂ = 870 nF and C₁-380 nF Figure C₁ +40 V ₁50 V₂ G 1=0 400,0 1 of 1 24 km 16 kn What percentage of the initial energy stored in the three capacitors is dissipated in the 24 kf2 resistor? Express your answer using two decimal places. VE] ΑΣΦ. It Ivec %diss-0.337 Submit Previous Answers Request Answer x Incorrect; Try Again; 5 attempts remaining Part B %diss - 0.035 Submit Previous Answers Request Answer What percentage of the initial energy stored in the three capacitors is dissipated in the 400 $2 resistor? Express your answer using two decimal places. ΕΠΙΑΣΦΗ! Ivec 4 * Incorrect; Try Again; 5 attempts remaining Part C %diss- Submit ⒸIE Request Answer → ? What percentage of the initial energy stored in the three capacitors is dissipated in the 16 kf2 resistor? Express your answer using two decimal places. [95]…arrow_forwardUseful Constants: k = 9.00 × 10º Nm² C2 8.85 x 10-12 C² Nm2 %3D e = 1.6 x 10-19 C me = 9.11 x 10 mp = 1.67 × 10-27kg %3D -27 mn = 1.68 x 10 %3Darrow_forwardWhen an initially uncharged capacitor is charged through a 25-k resistor by a 75-V dc ideal power source, it takes 0.30 ms for the capacitor to reach 50% of its maximum charge? What is the capacitance of this capacitor?arrow_forward
- 82. Switch S in is closed at time t 30, to begin charging an initially uncharged capacitance C= 15.0 µF through a resistor of resistance R = 20.0 Q. %3D S. cаpacitor of R %3D At what time is the potential across the capacitor equal to that across the resistor?arrow_forwardFor the circuit shown in the figure, V = 60 V, C = 20 uF, and R = 0.10 MQ. Initially the switch S is open and the capacitor is uncharged. The switch is then closed at time t = 0.00 s. What is the charge on the capacitor 8.0 s after closing the switch? C Hint: Straightforward use of the charge vs. time expression. Standard units during the calculation! O 1600 uC O 1200 uc O 1400 uC O 1900 uC O 940 uCarrow_forwardhelparrow_forward
- When charging a capacitor, as discussed in conjunction as shown, how long does it take for the voltage on the capacitor to reach emf? Is this a problem?arrow_forwardAfter the switch is closed for a long time, what is the charge on the 5 µF capacitor and the potential difference across it? 1µF SuF 12V 6µF Hllarrow_forwardA capacitor of capacitance C = 1 μF has been charged so that the potential difference between its plates is V0 = 295 V. The capacitor is then connected to a resistor of resistance R = 11.5 kΩ. The switch S is closed, and the capacitor begins to discharge. Calculate the potential difference VC in volts between the capacitor plates at time t = 5.0 ms after the switch is closed.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
DC Series circuits explained - The basics working principle; Author: The Engineering Mindset;https://www.youtube.com/watch?v=VV6tZ3Aqfuc;License: Standard YouTube License, CC-BY