(a)
The charge on the capacitor
(a)
Answer to Problem 69P
The charge on the capacitor
Explanation of Solution
The switch is closed in the electric circuit and the current exists in a simple series circuit as shown in figure
Write the expression for the power delivered to the resistor.
Here,
Use equation (I) to solve for
Write the expression for the potential difference across the resistor
Here,
Write the expression for the charge on the capacitor
Here,
Conclusion:
Substitute
Substitute
Substitute
Therefore, the charge on the capacitor
(b)
The amount of charge on the capacitor
(b)
Answer to Problem 69P
The amount of charge on the capacitor
Explanation of Solution
Consider the switch is closed to find the emf of the battery and the charge in the capacitor
Write the expression for the potential difference across
Write the expression for the charge on the capacitor
Write the expression for the emf of the battery.
Here,
Write the expression for
Use equation (VIII) in (VII) to solve for
Here,
After the switch is opened, no current exists. The potential difference across each resistor is zero. The emf of the battery appears across both capacitors.
Write the expression for the new charge on the
Write the expression for the amount of the charge on the capacitor is changed
Here,
Conclusion:
Substitute
Substitute
Substitute
Substitute
Substitute
Therefore, the amount of charge on the capacitor
Want to see more full solutions like this?
Chapter 21 Solutions
Bundle: Principles of Physics: A Calculus-Based Text, 5th + WebAssign Printed Access Card for Serway/Jewett's Principles of Physics: A Calculus-Based Text, 5th Edition, Multi-Term
- A potential difference of 1.00 V is maintained across a 10.0- resistor for a period of 20.0 s. What total charge passes by a point in one of the wires connected to the resistor in this time interval? (a) 200 C (b) 20.0 C (c) 2.00 C (d) 0.005 00 C (e) 0.050 0 Carrow_forwardIntegrated Concepts (a) What energy is dissipated by a lightning bolt having a 20,000-A current, a voltage of 1.00102 MV, and a length of 1.00 ms? (b) What mass of tree sap could be raised from 18.0°C to its boiling point and then evaporated by this energy, assuming sap has the same thermal characteristics as water?arrow_forwardA battery with = 6.00 V and no internal resistance supplies current to the circuit shown in Figure P27.9. When the double-throw switch S is open as shown in the figure, the current in the battery is 1.00 mA. When the switch is closed in position a, the current in the battery is 1.20 mA. When the switch is closed in position b, the current in the battery is 2.00 mA. Find the resistances (a) R1, (b) R2, and (c) R3. Figure P27.9 Problems 9 and 10.arrow_forward
- In the circuit of Figure P21.57, the switch S has been open for a long time. It is then suddenly closed. Take = 10.0 V, R1 = 50.0 k, R2 = 100 k, and C = 10.0 F. Determine the time constant (a) before the switch is closed and (b) after the switch is closed. (c) Let the switch be closed at t = 0. Determine the current in the switch as a function of time.arrow_forwardPower P0 = I0 V0 is delivered to a resistor of resistance R0. If the resistance is doubled (Rnew = 2R0) while the voltage is adjusted such that the current is constant, what are the ratios (a) Pnew/P0 and (b) Vnew/V0? If, instead, the resistance is held constant while Pnew = 2P0, what are the ratios (c) Vnew/V0, and (d) Inew/I0?arrow_forward(a) What is the average power output of a heart defibrillator that dissipates 400 J of energy in 10.0 ms? (b) Considering the high-power output, why doesn’t the defibrillator produce serious bums?arrow_forward
- Why is the following situation impossible? A battery has an emf of = 9.20 V and an internal resistance of r = 1.20 . A resistance R is connected across the battery and extracts from it a power of P = 21.2 W.arrow_forwardTwo conducting wires A and B of the same length and radius are connected across the same potential difference. Conductor A has twice the resistivity of conductor B. What is the ratio of the power delivered to A to the power delivered to B? (a) 2 (b) 2 (c) 1 (d) 12 (e)12arrow_forwardWhen operating on a 120-V circuit, an electric heater receives 1.30 103 W of power, a toaster receives 1.00 103 W, and an electric oven receives 1.54 103 W. If all three appliances are connected in parallel on a 120-V circuit and turned on, what is the total current drawn from an external source? (a) 24.0 A (b) 32.0 A (c) 40.0 A (d) 48.0 A (e) none of those answersarrow_forward
- The drawing shows a circuit that contains a battery, two resistors, and a switch. What is the equivalent resistance of the circuit when the switch is (a) open and (b) closed? What is the total power delivered to the resistors when the switch is (c) open and (d) closed? Świtch 9.00 V R1 = 65.0 2 R2 = 96.0 2arrow_forward3 0 b In the circuit shown, Determine the following: a 7 V 2 V+ A. Magnitude and direction of the current (Ans. I = 0.3889 A, CCW) B. The potential differences Vaa, Ver and Vne (Ans. Vad = 7.8333 V, Vef = -1.8889 V, Vne 4. 3333 V) h 6 V |+ 6Ω 4 V g + f earrow_forward210 0 a 24 V 50 μ 320 0 First, what is the time constant of the circuit formed when a and c are connected? Give your ans in ms to 3 significant digits. Question 17 Next, what is the time constant of the circuit formed when b and c connected? Give your answe ms to 3 significant digits. Question 18 Finally, you perform the following sequence of events. The capacitor starts uncharged and the switch is flipped to connect a and c. The capacitor is charged for 20 ms. The switch is then flipp to connect b and c, and the capacitor is discharged for 26 ms, at which time the switch is set to position where it is not in contact with either a or b. What is the voltage on the capacitor? Give answer to 2 significant digits.arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College