Concept explainers
Describe how to transform the graph of
In order to obtain the graph of h(x), translate the graph of function f(x) down by 2 units followed by vertically stretches by 3 units and finally reflected about the x-axis.
Given:
Calculation:
The given function is
The parent function is
We can see that 2 has been added to the function f(x). And as per the transformation rule, whenever we add any constant ‘c to the function, then the graph will translate up by c units.
Hence, the graph will be translated up by 2 units.
Moreover, 3 is multiplied as with x as well. Since, 3 is greater than 1. Hence, the graph stretches vertically by 3 units.
Finally, we have negative sign before the function. As per the rule when the graph is reflected out x -axis then
Therefore, the graph is reflected out x-axis,
Therefore, in order to obtain the graph of h(x), translate the graph of function f(x) down by 2 units followed by vertically stretches by 3 units and finally reflected about the x-axis.
Below, is the graph.
Chapter 2 Solutions
PRECALCULUS:...COMMON CORE ED.-W/ACCESS
- Inverse laplace transform Lect: Huda I H.w 1- F(S)= A- Find - F(s) of the following S (s+1)5 1 2- F(s) s² (s-a) 5+5 3- F(s)= s2+4s+3 1 4- F(s)= (s+2)2(s-2) 3s2-7s+5 5- F(s)= (s-1)(s2-5s+6)arrow_forwardInverse laplace transform Lect :Huda I H.w A- Find L-1 F(s) of the following 1- F(S)= 2- F(s)- S (+1)5 s² (s-a) 5+5 s2+4s+3 3- F(s)- 1 4- F(s)- (s+2)2(s-2) 3s2-7s+5 5- F(s)- (s-1)(s2-55+6) B-Solve the D.E of the following: 1- y'+3y+2fy dt = f(t) for y(0)-1 if f(t) is the function whose graph is shown below 2 1 2 2-y+4y-u(t) for y(0)=y'(0)=0 3- y"+4y'+13y= e−2t sin3t for y(0)-1 and y'(0)=-2 17arrow_forwardshow step by step answerarrow_forward
- Write the given third order linear equation as an equivalent system of first order equations with initial values. Use Y1 = Y, Y2 = y', and y3 = y". - - √ (3t¹ + 3 − t³)y" — y" + (3t² + 3)y' + (3t — 3t¹) y = 1 − 3t² \y(3) = 1, y′(3) = −2, y″(3) = −3 (8) - (888) - with initial values Y = If you don't get this in 3 tries, you can get a hint.arrow_forwardQuestion 2 1 pts Let A be the value of the triple integral SSS. (x³ y² z) dV where D is the region D bounded by the planes 3z + 5y = 15, 4z — 5y = 20, x = 0, x = 1, and z = 0. Then the value of sin(3A) is -0.003 0.496 -0.408 -0.420 0.384 -0.162 0.367 0.364arrow_forwardQuestion 1 Let A be the value of the triple integral SSS₂ (x + 22) = 1 pts dV where D is the region in 0, y = 2, y = 2x, z = 0, and the first octant bounded by the planes x z = 1 + 2x + y. Then the value of cos(A/4) is -0.411 0.709 0.067 -0.841 0.578 -0.913 -0.908 -0.120arrow_forward
- In the xy-plane, the graphs of the linear function and the exponential function E both pass through the points (0,2) and (1,6) The function f is given by f(x) = L(x) - E(x). What is the maximum value of f? A 0.007 B 0.172 C 0.540 D 1.002arrow_forwardn 3 5 ст 7 ап 85 95 105 The table gives values of an arithmetic sequence an for selected values of n. Which of the following linear functions is αρ constructed from the initial value an (with n = 0) and common difference of the sequence? A f(x) = 70+5x B f(x) = 70+10x C f(x) = 75+5x D f(x) = 75+10xarrow_forward3. Submit answer Practice similar Calculate the integral approximation Se for So dz. L-de 4 1. Submit answer Answers Answer 立 O Next item MOVIE BUZZ Score PixelPointTV - Movie Buz Watch the latest movie trailers, mo T Thearrow_forward
- I need help with this problem because I'm having issue with this problem.arrow_forwardFind a parametric representation for the surface. The part of the sphere x2 + y2 + z2 = 16 that lies above the cone z = (x2 + y2)1/2. Let x, y, and z be in terms of u and or v.arrow_forwardThis is a question I posted previously. I am looking for a convincing mathematical solution, not an explanation and definitions. Do not send me previous solutions, as it is a mistake. Please.arrow_forward
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning