Concept explainers
(a)
To find: The possible number of positive and negative real zeroes of the function
The possible number of positive zeores are 2 and negative real zeroes are 1.
Given information
Between the first two coefficients there are no change in signs but between second and third first change, then between our third and fourth second change .Descartes´ rule of signs tells that there are exactly 2 real positive zeros
In order to find the number of negative zeros we find f(-x) and count the number of changes in sign for the coefficients:
Here we can see that one changes of signs, hence there is one negative zeros
(b)
To find: The possible number of positive and negative real zeroes of the function
The positive roots are 0 and number of negative root is either 3 or 1.
Given information
There is no sign change between all the terms .hence there is no positive root.
In order to find the number of negative zeros we find f(-x) and count the number of changes in sign for the coefficients:
Here we can see that three changes of signs, hence there is 3 negative zeros or one negative zero
(c)
To find: The possible number of positive and negative real zeroes of the function
The positive roots are 1 and number of negative root is 0.
Given information
There is one sign change between all the terms .hence there is one positive root.
In order to find the number of negative zeros we find f(-x) and count the number of changes in sign for the coefficients:
Here we can see that there is no changes of signs, hence there is 0 negative zeros
(c)
To find: The possible number of positive and negative real zeroes of the function
The positive roots are 0 and number of negative root is 1.
Given information
There is one sign change between all the terms .hence there is one positive root.
In order to find the number of negative zeros we find f(-x) and count the number of changes in sign for the coefficients:
Here we can see that there is one change of signs, hence there is 1 negative zeros .
Chapter 2 Solutions
PRECALCULUS:...COMMON CORE ED.-W/ACCESS
- 8:38 *** TEMU TEMU -3 -2 7 B 2 1 & 5G. 61% 1 2 -1 Based on the graph above, determine the amplitude, period, midline, and equation of the function. Use f(x) as the output. Amplitude: 2 Period: 2 Midline: 2 ☑ syntax error: this is not an equation. Function: f(x) = −2 cos(πx + 2.5π) +2× Question Help: Worked Example 1 ☑ Message instructor Submit Question ||| <arrow_forward8:39 *** TEMU 5G 60% A ferris wheel is 28 meters in diameter and boarded from a platform that is 2 meters above the ground. The six o'clock position on the ferris wheel is level with the loading platform. The wheel completes 1 full revolution in 4 minutes. The function h = f(t) gives your height in meters above the ground t minutes after the wheel begins to turn. What is the amplitude? 14 meters What is the equation of the Midline? y = 16 What is the period? 4 meters minutes The equation that models the height of the ferris wheel after t minutes is: f(t): = ƒ (3) = ·−14(0) + 16 syntax error: you gave an equation, not an expression. syntax error. Check your variables - you might be using an incorrect one. How high are you off of the ground after 3 minutes? Round your answe the nearest meter. ||| <arrow_forwardcan you solve this question step by step pleasearrow_forward
- √3/2 1 √1-x2 arcsinx 1/2 dx = 2arrow_forwardThe evolution of a population of Hippos, R(t), in hundreds, time in years, in an African National Park is given by the equation, dR dt (a) Solve the system exactly for R(t). = R(7 – R); R(0) = 3 2 (b) What happens as the time t → ∞o, i.e. what is the population a long time in the future? (c) Write an Euler scheme and compute until the population levels off (using Excel, Matlab, Octave, LibreCalc or similar). Do it twice, once with At = 0.1 and once with At = 0.05. (d) Plot all of your solutions on the same set of axes and comment.arrow_forwardfind For triangle ABC, with vertices A = (3,-1,2), B = (-5,4,-4) and C = (6, −1, −1), (a) the length of side AB, (b) the equation of the line that passes through A and B, (c) the angle at vertex B, (d) a vector perpendicular to the plane containing the triangle ABC, (e) the area of the triangle ABC. (f) the equation of a plane passing through A, B and C.arrow_forward
- Showing all working, use the row reduction method to find the inverse of B, given by 5 -1 B = -3 1 3 1 -3 2arrow_forwardConsider the matrix A, given by +63) A = 1 -3 4 -3 4 5 -105 (a) Find the determinant of the matrix, A. (b) Find all possible solutions, x, to the system Ax = b, where b is the column vector, (1,2, −4).arrow_forwardIf a (1,4,2) and b = (−1, −5,3), find |a|, a + b, 3a - 2b, a b, a x b and b × a. What is the angle between a and b?arrow_forward
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning





