PHYSICS 1250 PACKAGE >CI<
9th Edition
ISBN: 9781305000988
Author: SERWAY
Publisher: CENGAGE LEARNING (CUSTOM)
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 21, Problem 21.9OQ
Which of the assumptions below is not made in the kinetic theory of gases? (a) The number of molecules is very large. (b) The molecules obey Newton’s laws of motion. (c) The forces between molecules are long range. (d) The gas is a pure substance. (e) The average separation between molecules is large compared to their dimensions. (f) of (his account are correct statements necessary for a clear and complete explanation? (ii) Which are correct statements that are not necessary to account for the higher thermometer reading? (iii) Which are incorrect statements?
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
Assuming the human body is primarily made of water, estimate the number of molecules in it. (Note that water has a molecular mass of 18 g/mol and there are roughly 1024 atoms in a mole.)
What does it mean when you have a unit mass of an ideal Gas? More specifically, I'm wondering as to what about the term 'unit mass' entails about the ideal gas?
Avagadro's number (6.023 × 1023) is a pure (unitless) number which serves as a good standard for measuring the number of molecules in ideal gases at STP.
A)What is the volume, in cubic kilometers, of Avogadro’s number of sand grains, if each grain is a cube with an edge length of 1.3 mm and the cubes are densely packed (with no air between them).
B) How long, in kilometers, would a beach have to be for this sand to cover it to a depth of 10.0 m? Assume a beach is 100.0 m wide, and you can neglect the air spaces between the grains.
Chapter 21 Solutions
PHYSICS 1250 PACKAGE >CI<
Ch. 21 - Two containers hold an ideal gas at the same...Ch. 21 - (i) How does the internal energy of an ideal gas...Ch. 21 - Prob. 21.3QQCh. 21 - Prob. 21.4QQCh. 21 - Cylinder A contains oxygen (O2) gas, and cylinder...Ch. 21 - An ideal gas is maintained at constant pressure....Ch. 21 - Prob. 21.3OQCh. 21 - A helium-filled latex balloon initially at room...Ch. 21 - Prob. 21.5OQCh. 21 - Prob. 21.6OQ
Ch. 21 - A sample of gas with a thermometer immersed in the...Ch. 21 - Prob. 21.8OQCh. 21 - Which of the assumptions below is not made in the...Ch. 21 - Hot air rises, so why does it generally become...Ch. 21 - Prob. 21.2CQCh. 21 - When alcohol is rubbed on your body, it lowers...Ch. 21 - What happens to a helium-filled latex balloon...Ch. 21 - Which is denser, dry air or air saturated with...Ch. 21 - One container is filled with helium gas and...Ch. 21 - Daltons law of partial pressures states that the...Ch. 21 - (a) How many atoms of helium gas fill a spherical...Ch. 21 - A cylinder contains a mixture of helium and argon...Ch. 21 - Prob. 21.3PCh. 21 - In an ultrahigh vacuum system (with typical...Ch. 21 - A spherical balloon of volume 4.00 103 cm3...Ch. 21 - A spherical balloon of volume V contains helium at...Ch. 21 - A 2.00-mol sample of oxygen gas is confined to a...Ch. 21 - Oxygen, modeled as an ideal gas, is in a container...Ch. 21 - Prob. 21.9PCh. 21 - The rms speed of an oxygen molecule (O2) in a...Ch. 21 - A 5.00-L vessel contains nitrogen gas at 27.0C and...Ch. 21 - A 7.00-L vessel contains 3.50 moles of gas at a...Ch. 21 - In a period of 1.00 s, 5.00 1023 nitrogen...Ch. 21 - In a constant-volume process, 209 J of energy is...Ch. 21 - A sample of a diatomic ideal gas has pressure P...Ch. 21 - Review. A house has well-insulated walls. It...Ch. 21 - A 1.00-mol sample of hydrogen gas is healed at...Ch. 21 - A vertical cylinder with a heavy piston contains...Ch. 21 - Calculate the change in internal energy of 3.00...Ch. 21 - A 1.00-L insulated bottle is full of tea at 90.0C....Ch. 21 - Review. This problem is a continuation of Problem...Ch. 21 - A certain molecule has f degrees of freedom. Show...Ch. 21 - In a crude model (Fig. P21.23) of a rotating...Ch. 21 - Why is the following situation impossible? A team...Ch. 21 - Prob. 21.25PCh. 21 - A 2.00-mol sample of a diatomic ideal gas expands...Ch. 21 - During the compression stroke of a certain...Ch. 21 - How much work is required to compress 5.00 mol of...Ch. 21 - Air in a thundercloud expands as it rises. If its...Ch. 21 - Why is the following situation impossible? A new...Ch. 21 - During the power stroke in a four-stroke...Ch. 21 - Air (a diatomic ideal gas) at 27.0C and...Ch. 21 - A 4.00-L sample of a diatomic ideal gas with...Ch. 21 - Prob. 21.34PCh. 21 - Prob. 21.35PCh. 21 - Fifteen identical particles have various speeds:...Ch. 21 - Prob. 21.37PCh. 21 - Prob. 21.38PCh. 21 - Prob. 21.39PCh. 21 - Consider a container of nitrogen gas molecules at...Ch. 21 - Prob. 21.41PCh. 21 - Prob. 21.42PCh. 21 - The law of atmospheres states that the number...Ch. 21 - Prob. 21.44APCh. 21 - Prob. 21.45APCh. 21 - The dimensions of a classroom are 4.20 m 3.00 m ...Ch. 21 - The Earths atmosphere consists primarily of oxygen...Ch. 21 - Prob. 21.48APCh. 21 - An air rifle shoots a lead pellet by allowing high...Ch. 21 - Prob. 21.50APCh. 21 - A certain ideal gas has a molar specific heat of...Ch. 21 - Prob. 21.52APCh. 21 - Review. Oxygen at pressures much greater than 1...Ch. 21 - Prob. 21.54APCh. 21 - Model air as a diatomic ideal gas with M = 28.9...Ch. 21 - Review. As a sound wave passes through a gas, the...Ch. 21 - Prob. 21.57APCh. 21 - In a cylinder, a sample of an ideal gas with...Ch. 21 - As a 1.00-mol sample of a monatomic ideal gas...Ch. 21 - A sample consists of an amount n in moles of a...Ch. 21 - Prob. 21.61APCh. 21 - A vessel contains 1.00 104 oxygen molecules at...Ch. 21 - A pitcher throws a 0.142-kg baseball at 47.2 m/s....Ch. 21 - The latent heat of vaporization for water at room...Ch. 21 - A sample of a monatomic ideal gas occupies 5.00 L...Ch. 21 - Prob. 21.66APCh. 21 - Prob. 21.67APCh. 21 - Prob. 21.68APCh. 21 - Prob. 21.69APCh. 21 - On the PV diagram for an ideal gas, one isothermal...Ch. 21 - Prob. 21.71APCh. 21 - Review, (a) H it has enough kinetic energy, a...Ch. 21 - Prob. 21.73APCh. 21 - Prob. 21.74CPCh. 21 - A cylinder is closed at both ends and has...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The inside volume of a house is equivalent to that of a rectangular solid 13.0 m wide by 200 m long by 2.75 m high. The house is heated by a forced air gas heater. The main uptake air duct of heater is 0.300 m in diameter. What is the average speed of the duct if it carries a volume equal to that of the house’s interior every 15 minutes?arrow_forwardHow many cubic meters of helium are required to lift a balloon with a 400-kg payload to a height of 8 000 m? Take He = 0.179 kg/m3. Assume the balloon maintains a constant volume and the density of air decreases with the altitude z according to the expression air = 0ez/8, where z is in meters and 0 = 1.20 kg/m3 is the density of air at sea level.arrow_forwardAn ideal gas is contained in a vessel at 300 K. The temperature of the gas is then increased to 900 K. (i) By what factor does the average kinetic energy of the molecules change, (a) a factor of 9, (b) a factor of 3, (c) a factor of 3, (d) a factor of 1, or (e) a factor of 13? Using the same choices as in part (i), by what factor does each of the following change: (ii) the rms molecular speed of the molecules, (iii) the average momentum change that one molecule undergoes in a collision with one particular wall, (iv) the rate of collisions of molecules with walls, and (v) the pressure of the gas?arrow_forward
- Approximately how many atoms thick is a cell membrane, assuming all atoms there average about twice the size of a hydrogen atom?arrow_forwardSmall differences in gas pressures are commonly measured with a micro-manometer of the type illustrated in Fig. (3). This device consists of two large reservoirs each having a cross sectional area A, which are filled with a liquid having a specific weight Y1 and connected by a U-tube of cross-sectional area A, containing a liquid of specific weight y2. When a differential gas pressure, P, - P2 , is applied, a differential reading, h, develops. It is desired to have this reading sufficiently large (so that it can be easily read) for small pressure At differentials. Determine the relationship between h and P1 P, when the area ratio is small, and show Ar that the differential reading, h, can be magnified by making the difference in specific weights, Y2 - Y1 , small. Assume that initially (with P = 2P2). %3D P1 P2 Y1 Figure (3)arrow_forwardPump some air into the container and hold the volume constant.Heat the gas using the heater under the container. temperature(K) pressure(kPa) 400 800 500 1000 600 1200 700 1400 800 1600 900 1800 1)Plot a graph of Pressure vs temperature and attached the graph below (show the data points and label the axes) 2)find the “molar density” of the gas in the container. (unit of answer: mole/m3)(Hint: consider the ideal gas law , the graph should be ??=??? a straight line, you can use the slope of the graph to find the answer. Pay attention to the unit. R=ideal gas constant=8.314 JK-1mol-1=8.314 m3PaK-1mol-1) Include the appropriate units in the physical quantities.(with steps)arrow_forward
- Compute the density in units of of an ideal gas under the following conditions: a) At and Torr pressure (1 Torr = 1mm Hg) this is called loschmidt number. b) In a vacuum of Torr at room temperature . This number is useful one for the experimentalist to know by heart. (10^-3 Torr = 1 micron)arrow_forwardConsider a given volume of helium gas at room temperature (20.0 °C). [Molar mass of helium is 4.00 × 10-³ kg mol−1] (i) Calculate the average speed of a molecule of the gas. Give your answer in scientific notation and specified to an appropriate number of significant figures, in the empty box below. = m s−1 (ii) At what temperature would the average translational energy of the gas be one third of the average translational energy at room temperature? Give your answer by entering numbers, specified to an appropriate number of significant figures, into the empty box below. temperature = Karrow_forwardAn atom of neon has a radius Ne-38. pm and an average speed in the gas phase at 25°C of 350.m/s. Suppose the speed of a neon atom at 25°C has been measured to within 0.10%. Calculate the smallest possible length of box inside of which the atom could be known to be located with certainty. Write your answer as a multiple of "Ne and round it to 2 significant figures. For example, if the smallest box the atom could be in turns out to be 42.0 times the radius of an atom of neon, you would enter "42.Ne" as your answer. [arrow_forward
- The law of atmospheres states that the number density of molecules in the atmosphere depends on height y above sea level according to where n, is the number density at sea level (where y = 0). The average height of a molecule in the Earth's atmosphere is given by | yn, (1) dy ye D/,T dy avg |n,G) dy eD/A,T dy (a) Prove that this average height is equal to kT/m,g. (b) Evaluate the average height, assuming the temperature is 10.0°C and the molecular mass is 28.9 u, both uniform throughout the atmosphere.arrow_forward(1) Hydrostatic balance states Әр Equation -1 -Pg, where p is pressure, z is altitude, pis density and g is the acceleration due to gravity. It can be shown that the reciprocal of hydrostatic balance also applies. That is Equation -2 Əz Əz Әр 1 pg Use the ideal gas law (p = pRT, where R is the gas constant for dry air and T is temperature) to eliminate p from (2). (2) Under geostrophic balance, the following balance is approximately satisfied Equation -3 fu = -g (³3), ду where f is the Coriolis parameter, u is the zonal wind, y is meridional distance and z is altitude. (Note that the derivative on the right hand side is taken at constant pressure.) Differentiate (3) with respect to p, and use your expression from part 1 to obtain an expression relating du/ap and OT/oy. This expression is called "thermal wind balance".arrow_forward4-20. Consider a gas in equilibrium with the surface of a solid. Some of the molecules of the gas will be adsorbed onto the surface, and the number adsorbed will be a function of the pressure of the gas. A simple statistical mechanical model for this system is to picture the solid surface to be a two-dimensional lattice of M sites. Each of these sites can be either un- occupied, or occupied by at most one of the molecules of the gas. Let the partition function of an unoccupied site be 1 and that of an occupied site be q(T). (We do not need to know q(T) here.) Assuming that molecules adsorbed onto the lattice sites do not interact with each other, the partition function of N molecules adsorbed onto M sites is then M! Q(N, M, T) = N! (M -- N)! [q(T)]" The binomial coefficient accounts for the number of ways of distributing the N molecules over the M sites. By using the fact the adsorbed molecules are in equilibrium with the gas phase molecules (considered to be an ideal gas), derive an…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Kinetic Molecular Theory and its Postulates; Author: Professor Dave Explains;https://www.youtube.com/watch?v=o3f_VJ87Df0;License: Standard YouTube License, CC-BY