Pump some air into the container and hold the volume constant.Heat the gas using the heater under the container. temperature(K) pressure(kPa) 400 800 500 1000 600 1200 700 1400 800 1600 900 1800 1)Plot a graph of Pressure vs temperature and attached the graph below (show the data points and label the axes) 2)find the “molar density” of the gas in the container. (unit of answer: mole/m3)(Hint: consider the ideal gas law , the graph should be ??=??? a straight line, you can use the slope of the graph to find the answer. Pay attention to the unit. R=ideal gas constant=8.314 JK-1mol-1=8.314 m3PaK-1mol-1) Include the appropriate units in the physical quantities.(with steps)
Pump some air into the container and hold the volume constant.Heat the gas using the heater under the container. temperature(K) pressure(kPa) 400 800 500 1000 600 1200 700 1400 800 1600 900 1800 1)Plot a graph of Pressure vs temperature and attached the graph below (show the data points and label the axes) 2)find the “molar density” of the gas in the container. (unit of answer: mole/m3)(Hint: consider the ideal gas law , the graph should be ??=??? a straight line, you can use the slope of the graph to find the answer. Pay attention to the unit. R=ideal gas constant=8.314 JK-1mol-1=8.314 m3PaK-1mol-1) Include the appropriate units in the physical quantities.(with steps)
Pump some air into the container and hold the volume constant.Heat the gas using the heater under the container. temperature(K) pressure(kPa) 400 800 500 1000 600 1200 700 1400 800 1600 900 1800 1)Plot a graph of Pressure vs temperature and attached the graph below (show the data points and label the axes) 2)find the “molar density” of the gas in the container. (unit of answer: mole/m3)(Hint: consider the ideal gas law , the graph should be ??=??? a straight line, you can use the slope of the graph to find the answer. Pay attention to the unit. R=ideal gas constant=8.314 JK-1mol-1=8.314 m3PaK-1mol-1) Include the appropriate units in the physical quantities.(with steps)
Pump some air into the container and hold the volume constant.Heat the gas using the heater under the container.
temperature(K)
pressure(kPa)
400
800
500
1000
600
1200
700
1400
800
1600
900
1800
1)Plot a graph of Pressure vs temperature and attached the graph below (show the data points and label the axes)
2)find the “molar density” of the gas in the container. (unit of answer: mole/m3)(Hint: consider the ideal gas law , the graph should be ??=??? a straight line, you can use the slope of the graph to find the answer. Pay attention to the unit. R=ideal gas constant=8.314 JK-1mol-1=8.314 m3PaK-1mol-1) Include the appropriate units in the physical quantities.(with steps)
Definition Definition Any of various laws that describe the ways in which volume, temperature, pressure, and other conditions correlate when matter is in a gaseous state. At a constant temperature, the pressure of a particular amount of gas is inversely proportional with its volume (Boyle's Law) In a closed system with constant pressure, the volume of an ideal gas is in direct relation with its temperature (Charles's Law) At a constant volume, the pressure of a gas is in direct relation to its temperature (Gay-Lussac's Law) If the volume of all gases are equal and under the a similar temperature and pressure, then they contain an equal number of molecules (Avogadro's Law) The state of a particular amount of gas can be determined by its pressure, volume and temperature (Ideal Gas law)
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.