PHYSICS 1250 PACKAGE >CI<
PHYSICS 1250 PACKAGE >CI<
9th Edition
ISBN: 9781305000988
Author: SERWAY
Publisher: CENGAGE LEARNING (CUSTOM)
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 21, Problem 21.61AP

(a)

To determine

The rms speed for a particle of diameter d .

(a)

Expert Solution
Check Mark

Answer to Problem 21.61AP

The rms speed for a particle of diameter d is (4.82×1012)d32m/s .

Explanation of Solution

Given info: Density of spherical particle is 1.00×103kg/m3 , temperature is 20.0°C and diameter of particle is d .

Write the expression for the rms speed:

vrms=3kBTm (1)

Here,

vrms is rms speed of particle.

kB is boltzmann’s constant.

T is temperature.

m is mass of gas molecule.

Write the formula for mass:

m=ρ×V (2)

Here,

ρ is density of spherical particle.

V is volume of spherical particle.

Write the formula for volume of spherical particle:

V=43πr3 (3)

It is given that diameter of spherical particle is d . So, the radius of spherical particle is d2 .

Substitute 3.14 for π and d2m for r in equation (3).

V=43(3.14)(d2m)3=0.52d3m3

Substitute 1.00×103kg/m3 for ρ and 0.52d3m3 for V in equation (2).

m=(1.00×103kg/m3)(0.52d3m3)=520d3kg

Since, boltzmann’s constant is 1.38×1023J/K .

Substitute 520d3kg for m , 20.0°C for T and 1.38×1023J/K for kB in equation (1).

vrms=3(1.38×1023J/K×1kgm2/s21J)(20.0+273K)520d3kg=(4.82×1012)d32m/s

Conclusion:

Therefore, the rms speed for a particle of diameter d is (4.82×1012)d32m/s .

(b)

To determine

The time interval for particle to move a distance equal to its own diameter.

(b)

Expert Solution
Check Mark

Answer to Problem 21.61AP

The time interval for particle to move a distance equal to its own diameter is (2.08×1011)d52s .

Explanation of Solution

Given info: Density of spherical particle is 1.00×103kg/m3 and temperature is 20.0°C .

Write the expression for the time interval related to rms:

t=dvrms (4)

Here,

t is time interval.

d is distance.

vrms is rms speed.

Since particle is moving equal to its diameter. So, the distance travelled by the particles is d .

Substitute d for d and (4.82×1012)d32m/s for vrms as calculated in above part in equation (3).

t=dm(4.82×1012)d32m/s=(2.08×1011)d52s

Conclusion:

Therefore, the time interval for particle to move a distance equal to its own diameter is (2.08×1011)d52s .

(c)

To determine

The rms speed and the time interval for a particle of diameter 3.00μm .

(c)

Expert Solution
Check Mark

Answer to Problem 21.61AP

The rms speed for a particle of diameter 3.00μm is 0.926mm/s and the time interval for a particle of diameter 3.00μm is 3.24ms .

Explanation of Solution

Given info: Density of spherical particle is 1.00×103kg/m3 , temperature is 20.0°C and diameter of particle is 3.00μm .

The rms speed for a particle of diameter d as calculated in above part is,

vrms= (4.82×1012)d32m/s

Substitute 3.00μm for d in above equation.

vrms=(4.82×1012)(3.00μm×106m1μm)32m/s=9.27×104m/s×103mm1m0.926mm/s

The time interval for a particle of diameter d as calculated in above part is,

t=(2.08×1011)d52s

Substitute 3.00μm for d in above equation.

t=(2.08×1011)(3.00μm×106m1μm)52m1s=0.00324s×103ms1s=3.24ms

Conclusion:

Therefore, the rms speed for a particle of diameter 3.00μm is 0.926mm/s and the time interval for a particle of diameter 3.00μm is 3.24ms .

(d)

To determine

The rms speed and the time interval for a sphere of 70.0kg .

(d)

Expert Solution
Check Mark

Answer to Problem 21.61AP

The rms speed for a sphere of 70.0kg is 1.32×1011m/s and the time interval for a sphere of 70.0kg is 3.88×1010s .

Explanation of Solution

Given info: Density of spherical particle is 1.00×103kg/m3 , temperature is 20.0°C and mass of the sphere is 70.0kg .

Write the expression for the rms speed:

vrms=3kBTm (5)

Here,

vrms is rms speed of particle.

kB is boltzmann’s constant.

T is temperature.

m is mass of sphere.

Substitute 70.0kg for m , 20.0°C for T and 1.38×1023J/K for kB in equation (5).

vrms=3(1.38×1023J/K×1kgm2/s21J)(20.0+273K)70.0kg=1.32×1011m/s

Thus, the rms speed of the partical is 1.32×1011m/s .

Write the formaula for volume in relation to mass and density.

V=mD

Here,

D is density.

Substitute 70.0kg for m and 1.00×103kg/m3 in above equation.

V=70.0kg1.00×103kg/m3=0.07m3

Write the formula for the volume of sphere:

V=43π(d2)3

Here,

V is volume of sphere.

d is diameter of sphere.

Rearrange above equation for d .

(d2)3=3V4πd=2(3V4π)13 (6)

Substitute 0.07m3 for V and 3.14 for π in equation (6).

d=2(3×0.07m34×3.14)13=0.51m

Write the expression for the time interval related to rms:

t=dvrms

Substitute d for d in above equation.

t=dvrms

Substitute 0.51m for d and 1.32×1011m/s for vrms in above equation.

t=0.51m1.32×1011m/s=3.86×1010s

Conclusion:

Therefore, the rms speed for a sphere of 70.0kg is 1.32×1011m/s and the time interval for a sphere of 70.0kg is 3.88×1010s .

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
m C A block of mass m slides down a ramp of height hand collides with an identical block that is initially at rest. The two blocks stick together and travel around a loop of radius R without losing contact with the track. Point A is at the top of the loop, point B is at the end of a horizon- tal diameter, and point C is at the bottom of the loop, as shown in the figure above. Assume that friction between the track and blocks is negligible. (a) The dots below represent the two connected blocks at points A, B, and C. Draw free-body dia- grams showing and labeling the forces (not com ponents) exerted on the blocks at each position. Draw the relative lengths of all vectors to reflect the relative magnitude of the forces. Point A Point B Point C (b) For each of the following, derive an expression in terms of m, h, R, and fundamental constants. i. The speed of moving block at the bottom of the ramp, just before it contacts the stationary block ii. The speed of the two blocks immediately…
The velocity of an elevator is given by the graph shown. Assume the positive direction is upward. Velocity (m/s) 3.0 2.5 2.0 1.5 1.0 0.5 0 0 5.0 10 15 20 25 Time (s) (a) Briefly describe the motion of the elevator. Justify your description with reference to the graph. (b) Assume the elevator starts from an initial position of y = 0 at t=0. Deriving any numerical values you need from the graph: i. Write an equation for the position as a function of time for the elevator from t=0 to t = 3.0 seconds. ii. Write an equation for the position as a function of time for the elevator from t = 3.0 seconds to t = 19 seconds. (c) A student of weight mg gets on the elevator and rides the elevator during the time interval shown in the graph. Consider the force of con- tact, F, between the floor and the student. How Justify your answer with reference to the graph does F compare to mg at the following times? and your equations above. i. = 1.0 s ii. = 10.0 s
Students are asked to use circular motion to measure the coefficient of static friction between two materials. They have a round turntable with a surface made from one of the materials, for which they can vary the speed of rotation. They also have a small block of mass m made from the sec- ond material. A rough sketch of the apparatus is shown in the figure below. Additionally they have equipment normally found in a physics classroom. Axis m (a) Briefly describe a procedure that would allow you to use this apparatus to calculate the coefficient of static friction, u. (b) Based on your procedure, determine how to analyze the data collected to calculate the coefficient of friction. (c) One group of students collects the following data. r (m) fm (rev/s) 0.050 1.30 0.10 0.88 0.15 0.74 0.20 0.61 0.25 0.58 i. Use the empty spaces in the table as needed to calculate quantities that would allow you to use the slope of a line graph to calculate the coefficient of friction, providing labels with…

Chapter 21 Solutions

PHYSICS 1250 PACKAGE >CI<

Ch. 21 - A sample of gas with a thermometer immersed in the...Ch. 21 - Prob. 21.8OQCh. 21 - Which of the assumptions below is not made in the...Ch. 21 - Hot air rises, so why does it generally become...Ch. 21 - Prob. 21.2CQCh. 21 - When alcohol is rubbed on your body, it lowers...Ch. 21 - What happens to a helium-filled latex balloon...Ch. 21 - Which is denser, dry air or air saturated with...Ch. 21 - One container is filled with helium gas and...Ch. 21 - Daltons law of partial pressures states that the...Ch. 21 - (a) How many atoms of helium gas fill a spherical...Ch. 21 - A cylinder contains a mixture of helium and argon...Ch. 21 - Prob. 21.3PCh. 21 - In an ultrahigh vacuum system (with typical...Ch. 21 - A spherical balloon of volume 4.00 103 cm3...Ch. 21 - A spherical balloon of volume V contains helium at...Ch. 21 - A 2.00-mol sample of oxygen gas is confined to a...Ch. 21 - Oxygen, modeled as an ideal gas, is in a container...Ch. 21 - Prob. 21.9PCh. 21 - The rms speed of an oxygen molecule (O2) in a...Ch. 21 - A 5.00-L vessel contains nitrogen gas at 27.0C and...Ch. 21 - A 7.00-L vessel contains 3.50 moles of gas at a...Ch. 21 - In a period of 1.00 s, 5.00 1023 nitrogen...Ch. 21 - In a constant-volume process, 209 J of energy is...Ch. 21 - A sample of a diatomic ideal gas has pressure P...Ch. 21 - Review. A house has well-insulated walls. It...Ch. 21 - A 1.00-mol sample of hydrogen gas is healed at...Ch. 21 - A vertical cylinder with a heavy piston contains...Ch. 21 - Calculate the change in internal energy of 3.00...Ch. 21 - A 1.00-L insulated bottle is full of tea at 90.0C....Ch. 21 - Review. This problem is a continuation of Problem...Ch. 21 - A certain molecule has f degrees of freedom. Show...Ch. 21 - In a crude model (Fig. P21.23) of a rotating...Ch. 21 - Why is the following situation impossible? A team...Ch. 21 - Prob. 21.25PCh. 21 - A 2.00-mol sample of a diatomic ideal gas expands...Ch. 21 - During the compression stroke of a certain...Ch. 21 - How much work is required to compress 5.00 mol of...Ch. 21 - Air in a thundercloud expands as it rises. If its...Ch. 21 - Why is the following situation impossible? A new...Ch. 21 - During the power stroke in a four-stroke...Ch. 21 - Air (a diatomic ideal gas) at 27.0C and...Ch. 21 - A 4.00-L sample of a diatomic ideal gas with...Ch. 21 - Prob. 21.34PCh. 21 - Prob. 21.35PCh. 21 - Fifteen identical particles have various speeds:...Ch. 21 - Prob. 21.37PCh. 21 - Prob. 21.38PCh. 21 - Prob. 21.39PCh. 21 - Consider a container of nitrogen gas molecules at...Ch. 21 - Prob. 21.41PCh. 21 - Prob. 21.42PCh. 21 - The law of atmospheres states that the number...Ch. 21 - Prob. 21.44APCh. 21 - Prob. 21.45APCh. 21 - The dimensions of a classroom are 4.20 m 3.00 m ...Ch. 21 - The Earths atmosphere consists primarily of oxygen...Ch. 21 - Prob. 21.48APCh. 21 - An air rifle shoots a lead pellet by allowing high...Ch. 21 - Prob. 21.50APCh. 21 - A certain ideal gas has a molar specific heat of...Ch. 21 - Prob. 21.52APCh. 21 - Review. Oxygen at pressures much greater than 1...Ch. 21 - Prob. 21.54APCh. 21 - Model air as a diatomic ideal gas with M = 28.9...Ch. 21 - Review. As a sound wave passes through a gas, the...Ch. 21 - Prob. 21.57APCh. 21 - In a cylinder, a sample of an ideal gas with...Ch. 21 - As a 1.00-mol sample of a monatomic ideal gas...Ch. 21 - A sample consists of an amount n in moles of a...Ch. 21 - Prob. 21.61APCh. 21 - A vessel contains 1.00 104 oxygen molecules at...Ch. 21 - A pitcher throws a 0.142-kg baseball at 47.2 m/s....Ch. 21 - The latent heat of vaporization for water at room...Ch. 21 - A sample of a monatomic ideal gas occupies 5.00 L...Ch. 21 - Prob. 21.66APCh. 21 - Prob. 21.67APCh. 21 - Prob. 21.68APCh. 21 - Prob. 21.69APCh. 21 - On the PV diagram for an ideal gas, one isothermal...Ch. 21 - Prob. 21.71APCh. 21 - Review, (a) H it has enough kinetic energy, a...Ch. 21 - Prob. 21.73APCh. 21 - Prob. 21.74CPCh. 21 - A cylinder is closed at both ends and has...
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
University Physics Volume 2
Physics
ISBN:9781938168161
Author:OpenStax
Publisher:OpenStax
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Kinetic Molecular Theory and its Postulates; Author: Professor Dave Explains;https://www.youtube.com/watch?v=o3f_VJ87Df0;License: Standard YouTube License, CC-BY