PHYSICS 1250 PACKAGE >CI<
9th Edition
ISBN: 9781305000988
Author: SERWAY
Publisher: CENGAGE LEARNING (CUSTOM)
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 21, Problem 21.9P
(a)
To determine
The mass of helium.
(b)
To determine
The mass of iron.
(c)
To determine
The mass of lead.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
Calculate the mass of an atom of (a) helium, (b) iron, and (c) lead. Give your answers in kilograms. The atomic masses of these atoms are 4.00 u, 55.9 u, and 207 u, respectively.
A proton, which is the nucleus of a hydrogen atom, can be modeled as a sphere with a diameter of 2.4 fm and a mass of 1.67 10-27 kg.Densities of Some Common Substances at Standard Temperature (0°C) and Pressure (Atmospheric)
Substance
ρ (kg/m3)
Substance
ρ (kg/m3)
Air
1.29
Iron
7.86 ✕ 103
Air (at 20°C andatmospheric pressure)
1.20
Lead
11.3 ✕ 103
Aluminum
2.70 ✕ 103
Mercury
13.6 ✕ 103
Benzene
0.879 ✕ 103
Nitrogen gas
1.25
Brass
8.4 ✕ 103
Oak
0.710 ✕ 103
Copper
8.92 ✕ 103
Osmium
22.6 ✕ 103
Ethyl alcohol
0.806 ✕ 103
Oxygen gas
1.43
Fresh water
1.00 ✕ 103
Pine
0.373 ✕ 103
Glycerin
1.26 ✕ 103
Platinum
21.4 ✕ 103
Gold
19.3 ✕ 103
Seawater
1.03 ✕ 103
Helium gas
1.79 ✕ 10−1
Silver
10.5 ✕ 103
Hydrogen gas
8.99 ✕ 10−2
Tin
7.30 ✕ 103
Ice
0.917 ✕ 103
Uranium
19.1 ✕ 103
(a) Determine the density of the proton.kg/m3
One mole of atoms consist of 6.02 × 10^23 individual atoms. If one mole of unicorn atoms were spread uniformly over the surface of a sphere the size of the Earth, approximately how many atoms would be found per square meter? The average radius of the Earth is 6.38 × 10^3 km.
Chapter 21 Solutions
PHYSICS 1250 PACKAGE >CI<
Ch. 21 - Two containers hold an ideal gas at the same...Ch. 21 - (i) How does the internal energy of an ideal gas...Ch. 21 - Prob. 21.3QQCh. 21 - Prob. 21.4QQCh. 21 - Cylinder A contains oxygen (O2) gas, and cylinder...Ch. 21 - An ideal gas is maintained at constant pressure....Ch. 21 - Prob. 21.3OQCh. 21 - A helium-filled latex balloon initially at room...Ch. 21 - Prob. 21.5OQCh. 21 - Prob. 21.6OQ
Ch. 21 - A sample of gas with a thermometer immersed in the...Ch. 21 - Prob. 21.8OQCh. 21 - Which of the assumptions below is not made in the...Ch. 21 - Hot air rises, so why does it generally become...Ch. 21 - Prob. 21.2CQCh. 21 - When alcohol is rubbed on your body, it lowers...Ch. 21 - What happens to a helium-filled latex balloon...Ch. 21 - Which is denser, dry air or air saturated with...Ch. 21 - One container is filled with helium gas and...Ch. 21 - Daltons law of partial pressures states that the...Ch. 21 - (a) How many atoms of helium gas fill a spherical...Ch. 21 - A cylinder contains a mixture of helium and argon...Ch. 21 - Prob. 21.3PCh. 21 - In an ultrahigh vacuum system (with typical...Ch. 21 - A spherical balloon of volume 4.00 103 cm3...Ch. 21 - A spherical balloon of volume V contains helium at...Ch. 21 - A 2.00-mol sample of oxygen gas is confined to a...Ch. 21 - Oxygen, modeled as an ideal gas, is in a container...Ch. 21 - Prob. 21.9PCh. 21 - The rms speed of an oxygen molecule (O2) in a...Ch. 21 - A 5.00-L vessel contains nitrogen gas at 27.0C and...Ch. 21 - A 7.00-L vessel contains 3.50 moles of gas at a...Ch. 21 - In a period of 1.00 s, 5.00 1023 nitrogen...Ch. 21 - In a constant-volume process, 209 J of energy is...Ch. 21 - A sample of a diatomic ideal gas has pressure P...Ch. 21 - Review. A house has well-insulated walls. It...Ch. 21 - A 1.00-mol sample of hydrogen gas is healed at...Ch. 21 - A vertical cylinder with a heavy piston contains...Ch. 21 - Calculate the change in internal energy of 3.00...Ch. 21 - A 1.00-L insulated bottle is full of tea at 90.0C....Ch. 21 - Review. This problem is a continuation of Problem...Ch. 21 - A certain molecule has f degrees of freedom. Show...Ch. 21 - In a crude model (Fig. P21.23) of a rotating...Ch. 21 - Why is the following situation impossible? A team...Ch. 21 - Prob. 21.25PCh. 21 - A 2.00-mol sample of a diatomic ideal gas expands...Ch. 21 - During the compression stroke of a certain...Ch. 21 - How much work is required to compress 5.00 mol of...Ch. 21 - Air in a thundercloud expands as it rises. If its...Ch. 21 - Why is the following situation impossible? A new...Ch. 21 - During the power stroke in a four-stroke...Ch. 21 - Air (a diatomic ideal gas) at 27.0C and...Ch. 21 - A 4.00-L sample of a diatomic ideal gas with...Ch. 21 - Prob. 21.34PCh. 21 - Prob. 21.35PCh. 21 - Fifteen identical particles have various speeds:...Ch. 21 - Prob. 21.37PCh. 21 - Prob. 21.38PCh. 21 - Prob. 21.39PCh. 21 - Consider a container of nitrogen gas molecules at...Ch. 21 - Prob. 21.41PCh. 21 - Prob. 21.42PCh. 21 - The law of atmospheres states that the number...Ch. 21 - Prob. 21.44APCh. 21 - Prob. 21.45APCh. 21 - The dimensions of a classroom are 4.20 m 3.00 m ...Ch. 21 - The Earths atmosphere consists primarily of oxygen...Ch. 21 - Prob. 21.48APCh. 21 - An air rifle shoots a lead pellet by allowing high...Ch. 21 - Prob. 21.50APCh. 21 - A certain ideal gas has a molar specific heat of...Ch. 21 - Prob. 21.52APCh. 21 - Review. Oxygen at pressures much greater than 1...Ch. 21 - Prob. 21.54APCh. 21 - Model air as a diatomic ideal gas with M = 28.9...Ch. 21 - Review. As a sound wave passes through a gas, the...Ch. 21 - Prob. 21.57APCh. 21 - In a cylinder, a sample of an ideal gas with...Ch. 21 - As a 1.00-mol sample of a monatomic ideal gas...Ch. 21 - A sample consists of an amount n in moles of a...Ch. 21 - Prob. 21.61APCh. 21 - A vessel contains 1.00 104 oxygen molecules at...Ch. 21 - A pitcher throws a 0.142-kg baseball at 47.2 m/s....Ch. 21 - The latent heat of vaporization for water at room...Ch. 21 - A sample of a monatomic ideal gas occupies 5.00 L...Ch. 21 - Prob. 21.66APCh. 21 - Prob. 21.67APCh. 21 - Prob. 21.68APCh. 21 - Prob. 21.69APCh. 21 - On the PV diagram for an ideal gas, one isothermal...Ch. 21 - Prob. 21.71APCh. 21 - Review, (a) H it has enough kinetic energy, a...Ch. 21 - Prob. 21.73APCh. 21 - Prob. 21.74CPCh. 21 - A cylinder is closed at both ends and has...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Pd Pd 1. Let's consider a toy model of nuclear fission. Suppose an nucleus of Uranium-235 (92 protons, molar weight of 235 g/mole) "splits" into two "daughter" nuclei of Palladium (46 protons each) – this is not how it really happens, but it's a very simple model that actually gives fairly accurate results. The radius of the original U-235 nucleus is about 7.4 x 10-15 m. (a) If the Pd nuclei each have half the volume of the U nucleus, which is reasonable, and they are "touching" right after the split, how far apart are their centers? (b) Using conservation of energy, what will be the sum of the kinetic energies of the Pd nuclei when they are far apart from each other? (c) That's energy of one atom undergoing fission, so what, then, is the energy released by the fission of 1 kg of U-235? Express this in Joules and also in kilotons of TNT, where 1 kt = 4.2x1012 J. (The Hiroshima bomb yielded about 15 kt) (d) How many kwh (kilowatt-hours) of energy is this, (1 kwh = 3.6x10° J), and (if…arrow_forwardThe nucleus of an atom can be modeled as several protons and neutrons closely packed together. Each particle has a mass of 1.67 x 10-27 kg and radius on the order of 10-15 m. (a) Use this model and the data provided to estimate the density of the nucleus of an atom. | kg/m³ (b) Compare your result with the density of a material such as iron w = 7874 kg/m?). What do your result and comparison suggest about the structure of matter?arrow_forwardProblem 5: Any ideal gas at standard temperature and pressure (STP) has a number density (atoms per unit volume) of p = N/V = 2.68 × 1025 m²3. How many atoms are there in 11 cubic micrometers, at STP? N =| atomsarrow_forward
- The volume of an automobile tire is 2.5x10^-2m^3. The pressure of the air in the tire is 3.3 atm and the temperature is 25C°. What is the mass of air in grams? The mean molecular mass of air is 29g. Calculate to 2 decimals.arrow_forwardQ1/ If H = U + PV, find the relations between G and FH.arrow_forwardthe average density of an atom is approximately 103 kg/m3. The nucleus of an atom has a radius about 10-5 times that of the entire atom, and contains nearly all the mass of the atom. What is the approximate density, in kilograms per cubic meter, of a nucleus?arrow_forward
- The nucleus of an atom can be modeled as several protons and neutrons closely packed together. Each particle has a mass of 1.67 x 10-27 kg and radius on the order of 10-15 m. (a) Use this model and information to estimate the density of the nucleus of an atom. 3.986E177 Your response differs significantly from the correct answer. Rework your solution from the beginning and check each step carefully. kg/m³ (b) Compare your result with the density of a material such as iron. What do your result and comparison suggest about the structure of matter?arrow_forwardPlease solve 2A and 2Barrow_forwardIn the fall of 2002, a group of scientists at Los Alamos National Laboratory determined that the critical mass of neptunium-237 is about 60.0kg. The critical mass of a fissionable material is the minimum amount that must be brought together to start a chain reaction. Neptunium-237 has a density of 19.5g/cm3. What would be the radius rr of a sphere of neptunium-237 that has a critical mass?arrow_forward
- A typical atom has a diameter of about 1.0×10^−10m. Approximately how many atoms are there along a 5.0 −cm−cm line? Express your answer using two significant figures.arrow_forwardThe nucleus of an atom can be modeled as several protons and neutrons closely packed together. Each particle has a mass of 1.67 x 10-27 kg and radius on the order of 10-15 m. (a) Use this model and information to estimate the density of the nucleus of an atom. kg/m3 (b) Compare your result with the density of a material such as iron. What do your result and comparison suggest about the structure of matter?arrow_forwardAccording to the Ideal Gas Law, PV = KT, where P is pressure, V is volume, T is temperature (in kelvins), and k is a constant of proportionality. A tank contains 1300 cubic inches of nitrogen at a pressure of 40 pounds per square inch and a temperature of 300 K. (a) Determine k. k = (b) Write P as a function of V and T and describe the level curves. P = Setting P = c, the level curves are of the form V =arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning