University Physics with Modern Physics (14th Edition)
14th Edition
ISBN: 9780321973610
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 21, Problem 21.76P
The earth has a downward-directed electric field near its surface of about 150 N/C. If a raindrop with a diameter of 0.020 mm is suspended, motionless, in this field, how many excess electrons must it have on its surface?
Expert Solution & Answer
Learn your wayIncludes step-by-step video
schedule04:27
Students have asked these similar questions
A metal sphere of radius R=2.0 cm is suspended from the ceiling by an insulating rope. A point sphere with q=-3.OnC charge is fixed to the ground 3.0m below the center of the sphere. What could be the highest tensile force that can occur in the rope when the metal sphere begins to be charged with an electrical charge? (The electric field to ionize the air is 5x104 V/m.)
What must the charge (sign and magnitude) of a 3.45 gg particle be for it to remain stationary when placed in a downward-directed electric field of magnitude 530 N/C?
Express your answer in microcoulombs.
A metal sphere of radius 5.00 cm is initially uncharged. How many electrons would have to be placed on the sphere to
produce an electric field of magnitude 1.43 x 10° N/C at a point 8.60 cm from the center of the sphere?
electrons
Chapter 21 Solutions
University Physics with Modern Physics (14th Edition)
Ch. 21.1 - Two charged objects repel each other through the...Ch. 21.2 - You have two lightweight metal spheres, each...Ch. 21.3 - Suppose that charge q2 in Example 21.4 were 2.0 C....Ch. 21.4 - (a) A negative point charge moves along a...Ch. 21.5 - Suppose that the line of charge in Fig. 21.24...Ch. 21.6 - Suppose the electric field lines in a region of...Ch. 21.7 - An electric dipole is placed in a region of...Ch. 21 - If you peel two strips of transparent tape off the...Ch. 21 - Two metal spheres are hanging from nylon threads....Ch. 21 - The electric force between two charged particles...
Ch. 21 - Your clothing tends to cling together after going...Ch. 21 - An uncharged metal sphere hangs from a nylon...Ch. 21 - BIO Estimate how many electrons there are in your...Ch. 21 - Figure Q2I.7 shows some of the electric field...Ch. 21 - Good conductors of electricity, such as metals,...Ch. 21 - Suppose that the charge shown in Fig. 21.28a is...Ch. 21 - Two identical metal objects are mounted on...Ch. 21 - Because the charges on the electron and proton...Ch. 21 - If you walk across a nylon rug and then touch a...Ch. 21 - You have a negatively charged object. How can you...Ch. 21 - When two point charges of equal mass and charge...Ch. 21 - A point charge of mass m and charge Q and another...Ch. 21 - A proton is placed in a uniform electric field and...Ch. 21 - In Example 21.1 (Section 21.3) we saw that the...Ch. 21 - What similarities do electric forces have with...Ch. 21 - Two irregular objects A and B carry charges of...Ch. 21 - Atomic nuclei are made of protons and neutrons....Ch. 21 - Sufficiently strong electric fields can cause...Ch. 21 - The electric fields at point P due to the positive...Ch. 21 - The air temperature and the velocity of the air...Ch. 21 - Excess electrons are placed on a small lead sphere...Ch. 21 - Lightning occurs when there is a flow of electric...Ch. 21 - If a proton and an electron are released when they...Ch. 21 - Particles in a Gold Ring. You have a pure...Ch. 21 - BIO Signal Propagation in Neurons. Neurons are...Ch. 21 - Two small spheres spaced 20.0 cm apart have equal...Ch. 21 - An average human weighs about 650 N. If each of...Ch. 21 - Two small aluminum spheres, each having mass...Ch. 21 - Two small plastic spheres are given positive...Ch. 21 - Just How Strong Is the Electric Force? Suppose you...Ch. 21 - In an experiment in space, one proton is held...Ch. 21 - A negative charge of 0.550 C exerts an upward...Ch. 21 - Three point charges are arranged on a line. Charge...Ch. 21 - In Example 21.4, suppose the point charge on the...Ch. 21 - In Example 21.3, calculate the net force on charge...Ch. 21 - In Example 21.4, what is the net force (magnitude...Ch. 21 - Three point charges are arranged along the...Ch. 21 - Repeat Exercise 21.17 for q3 = +8.00 C.Ch. 21 - Two point charges are located on the y-axis as...Ch. 21 - Two point charges are placed on the .x -axis as...Ch. 21 - BIO Base Pairing in DNA, I. The two sides of the...Ch. 21 - BIO Base Pairing in DNA, II. Refer to Exercise...Ch. 21 - CP A proton is placed in a uniform electric field...Ch. 21 - A particle has charge 5.00 nC. (a) Find the...Ch. 21 - CP A proton is traveling horizontally to the right...Ch. 21 - CP An electron is released from rest in a uniform...Ch. 21 - (a) What must the charge (sign and magnitude) of a...Ch. 21 - Electric Field of the Earth. The earth has a net...Ch. 21 - CP An electron is projected with an initial speed...Ch. 21 - (a) Calculate the magnitude and direction...Ch. 21 - CP In Exercise 21.29, what is the speed of the...Ch. 21 - CP A uniform electric field exists in the region...Ch. 21 - A point charge is at the origin. With this point...Ch. 21 - A +8.75-C point charge is glued down on a...Ch. 21 - (a) An electron is moving east in a uniform...Ch. 21 - Two point charges Q and +q (where q is positive)...Ch. 21 - Two positive point charges q are placed on the...Ch. 21 - The two charges q1 and q2 shown in Fig. E21.38...Ch. 21 - A +2.00-nC point charge is at the origin, and a...Ch. 21 - Repeat Exercise 21.39, hut now let the charge at...Ch. 21 - Three negative point charges lie along a line as...Ch. 21 - A point charge is placed at each corner of a...Ch. 21 - Two point charges are separated by 25.0 cm (Fig....Ch. 21 - Point charge q1 = 5.00 nC is at the origin and...Ch. 21 - If two electrons are each 1.50 1010 m from a...Ch. 21 - BIO Electric Field of Axons. A nerve signal is...Ch. 21 - In a rectangular coordinate system a positive...Ch. 21 - A point charge q1 = 4.00 nC is at the point x =...Ch. 21 - A charge of 6.50nC is spread uniformly over the...Ch. 21 - A very long, straight wire has charge per unit...Ch. 21 - A ring-shaped conductor with radius a = 2.50 cm...Ch. 21 - A straight, nonconducting plastic wire 8.50 cm...Ch. 21 - Point charges q1 = 4.5 nC and q2 = +4.5 nC are...Ch. 21 - The ammonia molecule (NH3) has a dipole moment of...Ch. 21 - Torque on a Dipole. An electric dipole with dipole...Ch. 21 - The dipole moment of the water molecule (H2O) is...Ch. 21 - Three charges are at the corners of an isosceles...Ch. 21 - Consider the electric dipole of Example 21.14. (a)...Ch. 21 - Four identical charges Q are placed at the corners...Ch. 21 - Two charges are placed on the x-axis: one, of 2.50...Ch. 21 - A charge q1 = +5.00 nC is placed at the origin of...Ch. 21 - CP Two identical spheres with mass m are hung from...Ch. 21 - CP Two small spheres with mass m = 15.0 g are hung...Ch. 21 - CP Two identical spheres are each attached to silk...Ch. 21 - CP A small 12.3-g plastic ball is tied to a very...Ch. 21 - Point charge q1 = 6.00 106 C is on the x-axis at...Ch. 21 - Two particles having charges q1 = 0.500 nC and q2...Ch. 21 - A 3.00-nC point charge is on the x-axis at x =...Ch. 21 - A charge +Q is located at the origin, and a charge...Ch. 21 - A charge of 3.00 nC is placed at the origin of an...Ch. 21 - Three identical point charges q are placed at each...Ch. 21 - Two point charges q1 and q2 are held in place 4.50...Ch. 21 - CP Strength of the Electric Force. Imagine two...Ch. 21 - CP Two tiny spheres of mass 6.80 mg carry charges...Ch. 21 - CP Consider a model of a hydrogen atom in which an...Ch. 21 - The earth has a downward-directed electric field...Ch. 21 - CP A proton is projected into a uniform electric...Ch. 21 - A small object with mass m, charge q, and initial...Ch. 21 - CALC Positive charge Q is distributed uniformly...Ch. 21 - In a region where there is a uniform electric...Ch. 21 - A negative point charge q1 = 4.00 nC is on the...Ch. 21 - CALC Positive charge Q is distributed uniformly...Ch. 21 - A uniformly charged disk like the disk in Fig....Ch. 21 - CP A small sphere with mass m carries a positive...Ch. 21 - CALC Negative charge Q is distributed uniformly...Ch. 21 - CALC A semicircle of radius a is in the first and...Ch. 21 - Two 1.20-m non- conducting rods meet at a right...Ch. 21 - Two very large parallel sheets are 5.00 cm apart....Ch. 21 - Repeat Problem 21.88 for the case where sheet B is...Ch. 21 - Two very large horizontal sheets are 4.25 cm apart...Ch. 21 - CP A thin disk with a circular hole at its center,...Ch. 21 - DATA CP Design of an Inkjet Printer. Inkjet...Ch. 21 - DATA Two small spheres, each carrying a net...Ch. 21 - DATA Positive charge Q is distributed uniformly...Ch. 21 - Three charges are placed as shown in Fig. P21.95....Ch. 21 - Two charges are placed as shown in Fig. P21.96....Ch. 21 - CALC Two thin rods of length L lie along the...Ch. 21 - BIO ELECTRIC BEES. Flying insects such as bees may...Ch. 21 - BIO ELECTRIC BEES. Flying insects such as bees may...Ch. 21 - After one bcc left a flower with a positive...Ch. 21 - In a follow-up experiment, a charge of +40 pC was...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Carefully examine the common sedimentary rocks shown In Figure 2.13. Use these photos and the preceding discuss...
Applications and Investigations in Earth Science (9th Edition)
74. You are the science officer on a visit to a distant solar system. Prior to landing on a planet you measure ...
College Physics: A Strategic Approach (3rd Edition)
53. This reaction was monitored as a function of time:
A plot of In[A] versus time yields a straight ...
Chemistry: Structure and Properties (2nd Edition)
Flask A contains yeast cells in glucose-minimal salts broth incubated at 30C with aeration. Flask B contains ye...
Microbiology: An Introduction
Distinguish between microevolution, speciation, and macroevolution.
Campbell Essential Biology (7th Edition)
18. SCIENTIFIC THINKING By measuring the fossil remains of Homo floresiensis, scientists have estimated its wei...
Campbell Biology: Concepts & Connections (9th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A circular ring of charge with radius b has total charge q uniformly distributed around it. What is the magnitude of the electric field at the center of the ring? (a) 0 (b) keq/b2 (c) keq2/b2 (d) keq2/b (e) none of those answersarrow_forwardaA plastic rod of length = 24.0 cm is uniformly charged with a total charge of +12.0 C. The rod is formed into a semicircle with its center at the origin of the xy plane (Fig. P24.34). What are the magnitude and direction of the electric field at the origin? Figure P24.34arrow_forwardA metal sphere with charge +8.00 nC is attached to the left-hand end of a nonconducting rod of length L = 2.00 m. A second sphere with charge +2.00 nC is fixed to the right-hand end of the rod (Fig. P23.53). At what position d along the rod can a charged bead be placed for the bead to be in equilibrium? FIGURE P23.53arrow_forward
- A Figure P23.65 shows two identical conducting spheres, each with charge q, suspended from light strings of length L. If the equilibrium angle the strings make with the vertical is , what is the mass m of the spheres? Figure P23.65arrow_forwardAn electron with a speed of 3.00 106 m/s moves into a uniform electric field of magnitude 1.00 103 N/C. The field lines are parallel to the electrons velocity and pointing in the same direction as the velocity. How far does the electron travel before it is brought to rest? (a) 2.56 cm (b) 5.12 cm (c) 11.2 cm (d) 3.34 m (e) 4.24 marrow_forwardConsider the electric dipole shown in Figure P22.22. Show that the electric field at a distant point on the +x axis is Ex= 4kaqa/x3. Figure P22.22arrow_forward
- In nuclear fission, a nucleus of uranium-238, which contains 92 protons, can divide into two smaller spheres, each having 46 protons and a radius of 5.90 1015 m. What is the magnitude of the repulsive electric force pushing the two spheres apart?arrow_forwardA 1.75-nC charged particle located at the origin is separated by a distance of 0.0825 m from a 2.88-nC charged particle located farther along the positive x axis. If the 1.75-nC particle is kept fixed at the origin, where along the positive x axis should the 2.88-nC particle be located so that the magnitude of the electrostatic force it experiences is twice as great as it was in Problem 27?arrow_forwardThree small metallic spheres with identical mass m and identical charge +q are suspended by light strings from the same point (Fig. P23.55). The left-hand and right-hand strings have length L and make an angle with the vertical. What is the value of q in terms of k, g, m, L, and ? Figure P23.55arrow_forward
- A uniformly charged insulating rod of length 14.0 cm is bent into the shape of a semicircle as shown in Figure P 19.21. The rod has a total charge of 7.50 C. Find (a) the magnitude and (b) the direction of the electric field at O, the center of the semicircle.arrow_forwardTwo solid spheres, both of radius 5 cm, carry identical total charges of 2 C. Sphere A is a good conductor. Sphere B is an insulator, and its charge is distributed uniformly throughout its volume. (i) How do the magnitudes of the electric fields they separately create at a radial distance of 6 cm compare? (a) EA EB = 0 (b) EA EB 0 (c) EA = EB 0 (d) 0 EA EB (e) 0 = EA EB (ii) How do the magnitudes of the electric fields they separately create at radius 4 cm compare? Choose from the same possibilities as in part (i).arrow_forwardTwo solid spheres, both of radius 5 cm. carry identical total charges of 2 C. Sphere A is a good conductor. Sphere B is an insulator, and its charge is distributed uniformly throughout its volume, (i) How do the magnitudes of the electric fields they separately create at a radial distance of 6 cm compare? (a) EA EB= 0 (b) EA EB 0 (c) EA = EB 0 (d) 0EAEB (e) 0 = Ea EB (ii) How do the magnitudes of the electric fields they separately create at radius 4 cm compare? choose from the same possibilities as in part (i).arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY