University Physics with Modern Physics (14th Edition)
14th Edition
ISBN: 9780321973610
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 21, Problem 21.16DQ
A proton is placed in a uniform electric field and then released. Then an electron is placed at this same point and released. Do these two particles experience the same force? The same acceleration? Do they move in the same direction when released?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 21 Solutions
University Physics with Modern Physics (14th Edition)
Ch. 21.1 - Two charged objects repel each other through the...Ch. 21.2 - You have two lightweight metal spheres, each...Ch. 21.3 - Suppose that charge q2 in Example 21.4 were 2.0 C....Ch. 21.4 - (a) A negative point charge moves along a...Ch. 21.5 - Suppose that the line of charge in Fig. 21.24...Ch. 21.6 - Suppose the electric field lines in a region of...Ch. 21.7 - An electric dipole is placed in a region of...Ch. 21 - If you peel two strips of transparent tape off the...Ch. 21 - Two metal spheres are hanging from nylon threads....Ch. 21 - The electric force between two charged particles...
Ch. 21 - Your clothing tends to cling together after going...Ch. 21 - An uncharged metal sphere hangs from a nylon...Ch. 21 - BIO Estimate how many electrons there are in your...Ch. 21 - Figure Q2I.7 shows some of the electric field...Ch. 21 - Good conductors of electricity, such as metals,...Ch. 21 - Suppose that the charge shown in Fig. 21.28a is...Ch. 21 - Two identical metal objects are mounted on...Ch. 21 - Because the charges on the electron and proton...Ch. 21 - If you walk across a nylon rug and then touch a...Ch. 21 - You have a negatively charged object. How can you...Ch. 21 - When two point charges of equal mass and charge...Ch. 21 - A point charge of mass m and charge Q and another...Ch. 21 - A proton is placed in a uniform electric field and...Ch. 21 - In Example 21.1 (Section 21.3) we saw that the...Ch. 21 - What similarities do electric forces have with...Ch. 21 - Two irregular objects A and B carry charges of...Ch. 21 - Atomic nuclei are made of protons and neutrons....Ch. 21 - Sufficiently strong electric fields can cause...Ch. 21 - The electric fields at point P due to the positive...Ch. 21 - The air temperature and the velocity of the air...Ch. 21 - Excess electrons are placed on a small lead sphere...Ch. 21 - Lightning occurs when there is a flow of electric...Ch. 21 - If a proton and an electron are released when they...Ch. 21 - Particles in a Gold Ring. You have a pure...Ch. 21 - BIO Signal Propagation in Neurons. Neurons are...Ch. 21 - Two small spheres spaced 20.0 cm apart have equal...Ch. 21 - An average human weighs about 650 N. If each of...Ch. 21 - Two small aluminum spheres, each having mass...Ch. 21 - Two small plastic spheres are given positive...Ch. 21 - Just How Strong Is the Electric Force? Suppose you...Ch. 21 - In an experiment in space, one proton is held...Ch. 21 - A negative charge of 0.550 C exerts an upward...Ch. 21 - Three point charges are arranged on a line. Charge...Ch. 21 - In Example 21.4, suppose the point charge on the...Ch. 21 - In Example 21.3, calculate the net force on charge...Ch. 21 - In Example 21.4, what is the net force (magnitude...Ch. 21 - Three point charges are arranged along the...Ch. 21 - Repeat Exercise 21.17 for q3 = +8.00 C.Ch. 21 - Two point charges are located on the y-axis as...Ch. 21 - Two point charges are placed on the .x -axis as...Ch. 21 - BIO Base Pairing in DNA, I. The two sides of the...Ch. 21 - BIO Base Pairing in DNA, II. Refer to Exercise...Ch. 21 - CP A proton is placed in a uniform electric field...Ch. 21 - A particle has charge 5.00 nC. (a) Find the...Ch. 21 - CP A proton is traveling horizontally to the right...Ch. 21 - CP An electron is released from rest in a uniform...Ch. 21 - (a) What must the charge (sign and magnitude) of a...Ch. 21 - Electric Field of the Earth. The earth has a net...Ch. 21 - CP An electron is projected with an initial speed...Ch. 21 - (a) Calculate the magnitude and direction...Ch. 21 - CP In Exercise 21.29, what is the speed of the...Ch. 21 - CP A uniform electric field exists in the region...Ch. 21 - A point charge is at the origin. With this point...Ch. 21 - A +8.75-C point charge is glued down on a...Ch. 21 - (a) An electron is moving east in a uniform...Ch. 21 - Two point charges Q and +q (where q is positive)...Ch. 21 - Two positive point charges q are placed on the...Ch. 21 - The two charges q1 and q2 shown in Fig. E21.38...Ch. 21 - A +2.00-nC point charge is at the origin, and a...Ch. 21 - Repeat Exercise 21.39, hut now let the charge at...Ch. 21 - Three negative point charges lie along a line as...Ch. 21 - A point charge is placed at each corner of a...Ch. 21 - Two point charges are separated by 25.0 cm (Fig....Ch. 21 - Point charge q1 = 5.00 nC is at the origin and...Ch. 21 - If two electrons are each 1.50 1010 m from a...Ch. 21 - BIO Electric Field of Axons. A nerve signal is...Ch. 21 - In a rectangular coordinate system a positive...Ch. 21 - A point charge q1 = 4.00 nC is at the point x =...Ch. 21 - A charge of 6.50nC is spread uniformly over the...Ch. 21 - A very long, straight wire has charge per unit...Ch. 21 - A ring-shaped conductor with radius a = 2.50 cm...Ch. 21 - A straight, nonconducting plastic wire 8.50 cm...Ch. 21 - Point charges q1 = 4.5 nC and q2 = +4.5 nC are...Ch. 21 - The ammonia molecule (NH3) has a dipole moment of...Ch. 21 - Torque on a Dipole. An electric dipole with dipole...Ch. 21 - The dipole moment of the water molecule (H2O) is...Ch. 21 - Three charges are at the corners of an isosceles...Ch. 21 - Consider the electric dipole of Example 21.14. (a)...Ch. 21 - Four identical charges Q are placed at the corners...Ch. 21 - Two charges are placed on the x-axis: one, of 2.50...Ch. 21 - A charge q1 = +5.00 nC is placed at the origin of...Ch. 21 - CP Two identical spheres with mass m are hung from...Ch. 21 - CP Two small spheres with mass m = 15.0 g are hung...Ch. 21 - CP Two identical spheres are each attached to silk...Ch. 21 - CP A small 12.3-g plastic ball is tied to a very...Ch. 21 - Point charge q1 = 6.00 106 C is on the x-axis at...Ch. 21 - Two particles having charges q1 = 0.500 nC and q2...Ch. 21 - A 3.00-nC point charge is on the x-axis at x =...Ch. 21 - A charge +Q is located at the origin, and a charge...Ch. 21 - A charge of 3.00 nC is placed at the origin of an...Ch. 21 - Three identical point charges q are placed at each...Ch. 21 - Two point charges q1 and q2 are held in place 4.50...Ch. 21 - CP Strength of the Electric Force. Imagine two...Ch. 21 - CP Two tiny spheres of mass 6.80 mg carry charges...Ch. 21 - CP Consider a model of a hydrogen atom in which an...Ch. 21 - The earth has a downward-directed electric field...Ch. 21 - CP A proton is projected into a uniform electric...Ch. 21 - A small object with mass m, charge q, and initial...Ch. 21 - CALC Positive charge Q is distributed uniformly...Ch. 21 - In a region where there is a uniform electric...Ch. 21 - A negative point charge q1 = 4.00 nC is on the...Ch. 21 - CALC Positive charge Q is distributed uniformly...Ch. 21 - A uniformly charged disk like the disk in Fig....Ch. 21 - CP A small sphere with mass m carries a positive...Ch. 21 - CALC Negative charge Q is distributed uniformly...Ch. 21 - CALC A semicircle of radius a is in the first and...Ch. 21 - Two 1.20-m non- conducting rods meet at a right...Ch. 21 - Two very large parallel sheets are 5.00 cm apart....Ch. 21 - Repeat Problem 21.88 for the case where sheet B is...Ch. 21 - Two very large horizontal sheets are 4.25 cm apart...Ch. 21 - CP A thin disk with a circular hole at its center,...Ch. 21 - DATA CP Design of an Inkjet Printer. Inkjet...Ch. 21 - DATA Two small spheres, each carrying a net...Ch. 21 - DATA Positive charge Q is distributed uniformly...Ch. 21 - Three charges are placed as shown in Fig. P21.95....Ch. 21 - Two charges are placed as shown in Fig. P21.96....Ch. 21 - CALC Two thin rods of length L lie along the...Ch. 21 - BIO ELECTRIC BEES. Flying insects such as bees may...Ch. 21 - BIO ELECTRIC BEES. Flying insects such as bees may...Ch. 21 - After one bcc left a flower with a positive...Ch. 21 - In a follow-up experiment, a charge of +40 pC was...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Choose the best answer to each of the following. Explain your reasoning. When the ultraviolet light from hot st...
Cosmic Perspective Fundamentals
Which culture produces the most lactic acid? Use the following choices to answer questions. a. E. coli growing ...
Microbiology: An Introduction
In what way do the membranes of a eukaryotic cell vary? A. Phospholipids are found only in certain membranes. B...
Campbell Biology in Focus (2nd Edition)
23. How many significant figures are there in the following values?
a. 0.05 × 10-4 b. 0.00340
c. 7.2 × 104 ...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
With what geologic feature are the earthquakes in the mid-Atlantic associated?
Applications and Investigations in Earth Science (9th Edition)
3. In a test of his chromosome theory of heredity, Morgan crossed an F1 female Drosophila with red eyes to a m...
Genetic Analysis: An Integrated Approach (3rd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A proton is located at the origin, and a second proton is located on the x-axis at x = 6.00 fm (1 fm = 10-15 m). (a) Calculate the electric potential energy associated with this configuration. (b) An alpha particle (charge = 2e, mass = 6.64 1027 kg) is now placed at (x, y) = (3.00, 3.00) fm. Calculate the electric potential energy associated with this configuration. (c) Starting with the three-particle system, find the change in electric potential energy if the alpha particle is allowed to escape to infinity while the two protons remain fixed in place. (Throughout, neglect any radiation effects.) (d) Use conservation of energy to calculate the speed of the alpha particle at infinity. (e) If the two protons are released from rest and the alpha panicle remains fixed, calculate the speed of the protons at infinity.arrow_forwardA proton is released from rest at the origin in a uniform electric field in the positive x direction with magnitude 850 N/C. What is the change in the electric potential energy of the proton-field system when the proton travels to x = 2.50 m? (a) 3.40 X I0-l6J (b) -3.40 X 10-16J (c) 2.50 X 10-6J (d) -2.50 X 10-6J (e) -1.60 X 10-19Jarrow_forwardTwo particles each with charge +2.00 C are located on the x axis. One is at x = 1.00 m, and the other is at x = 1.00 m. (a) Determine the electric potential on the y axis at y = 0.500 m. (b) Calculate the change in electric potential energy of the system as a third charged particle of 3.00 C is brought from infinitely far away to a position on the y axis at y = 0.500 m.arrow_forward
- If a negatively charged particle is placed at rest in an electric potential field that increases in the positive x-direction, will the panicle (a) accelerate in the positive x-direction, (b) accelerate in the negative x-direction, or (c) remain at rest?arrow_forwardAt a certain distance from a charged particle, the magnitude of the electric field is 500 V/m and the electric potential is 3.00 kV. (a) What is the distance to the particle? (b) What is the magnitude of the charge?arrow_forwardA point charge of q=50108 C is placed at the center of an uncharged spherical conducting shell of inner radius 6.0 cm and outer radius 9.0 cm. Find the electric potential at (a) r = 4,0cm, (b) r = 8.0 cm, (c) r — 12.0 cm.arrow_forward
- The potential in a region between x = 0 and x = 6.00 m V = a + bx, where a = 10.0 V and b = -7.00 V/m. Determine (a) the potential at x = 0, 3.00 m, and 6.00 m and (b) the magnitude and direction of the electric field at x = 0, 3.00 m. and 6.00 m.arrow_forwardFour particles are positioned on the rim of a circle. The charges on the particles are +0.500 C, +1.50 C, 1.00 C, and 0.500 C. If the electric potential at the center of the circle due to the +0.500 C charge alone is 4.50 104 V, what is the total electric potential at the center due to the four charges? (a) 18.0 104 V (b) 4.50 104 V (c) 0 (d) 4.50 104 V (e) 9.00 104 Varrow_forwardTwo particles, with charges of 20.0 nC and 20.0 nC, are placed at the points with coordinates (0, 4.00 cm) and (0, 4.00 cm) as shown in Figure P20.19. A particle with charge 10.0 nC is located at the origin. (a) Find the electric potential energy of the configuration of the three fixed charges. (b) A fourth particle, with a mass of 2.00 1013 kg and a charge of 40.0 nC, is released from rest at the point (3.00 cm, 0). Find its speed after it has moved freely to a very large distance away.arrow_forward
- A parallel-plate capacitor has square plates that are 8.00 cm on each side and 3.80 mm apart. The space between the plates is completely filled with two square slabs of dielectric, each 8.00 cm on a side and 1.90 mm thick. One slab is Pyrex glass and the other slab is polystyrene. If the potential difference between the plates is 86.0 V, find how much electrical energy can be stored in this capacitor.arrow_forwardGiven two particles with 2.00-C charges as shown in Figure P20.9 and a particle with charge q = 1.28 1018 C at the origin, (a) what is the net force exerted by the two 2.00-C charges on the test charge q? (b) What is the electric field at the origin due to the two 2.00-C particles? (c) What is the electric potential at the origin due to the two 2.00-C particles? Figure P20.9arrow_forwardIt is shown in Example 24.7 that the potential at a point P a distance a above one end of a uniformly charged rod of length lying along the x axis is V=keQlln(l+a2+l2a) Use this result to derive an expression for the y component of the electric field at P.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics Capacitor & Capacitance part 7 (Parallel Plate capacitor) CBSE class 12; Author: LearnoHub - Class 11, 12;https://www.youtube.com/watch?v=JoW6UstbZ7Y;License: Standard YouTube License, CC-BY