
Concept explainers
Interpretation: The wavelength required to break the bond between oxygen and hydrogen atom with given minimum energy requires for breaking the bond should be determined.
Concept Introduction:
Energy: The energy is conversed property since it can neither be created nor be destroyed but can be transformed. The energy of the photon is obtained by using the following relation
Wavelength: The distance between the two continuous maximum displacements present in wave or the two continuous minimum displacements present in a wave exhibited by the photons is called wavelength. The wavelength of the photon is inversely proportional to its frequency. The relationship between them is given by the following formula,
Frequency: It denotes the number of waves passes in given amount of time.
Atmosphere: The atmosphere is defined as air that is layer of gases which surrounds the earth due to gravity of earth.
The earth atmosphere consists of layers such as thermosphere, mesosphere, stratosphere and troposphere depending on the temperature and its composition.
Stratosphere:
It is found below the mesosphere layer in which the concentration of ozone and other gases are high. The increasing temperature for this layer with respect to increasing height is due to the presence of high concentration of ozone and other gases in it.
The increased temperature is due to the response of UV radiation from sun and hence ozone is formed due to this reaction and the use of ozone is that it prevents the UV radiation from the sun which is actually harmful.
Troposphere:
The layer is below stratosphere layer and it is closest to the earth surface. It is wholly composed of major air that is 80% of the total mass and almost all the water vapor.
It is the thinnest place which is responsible for all weather conditions since it contains almost all amounts of water vapor with it.
To determine: The wavelength required to decompose the given bond and the stability of that species in the given atmospheric layers.

Want to see the full answer?
Check out a sample textbook solution
Chapter 21 Solutions
Chemistry: Atoms First
- Select/ Match the correct letter from the image below for the IUPAC names given below: A B C D 3 E F G H K L Part 1. 4-methylheptane For example.mmmm Answer Letter H _for part 1 Part 2. 2,4-dimethylhexane Part 3. 2,3-dimethylpentane Part 4. 2,2-dimethylhexane Part 5. 2-ethyl-1,1,3,3-tetramethylcyclopentane Part 6. 3-ethyl-2-methylpentanearrow_forwardCan u show the process as to how to get these?arrow_forwardSketch the expected 'H NMR spectra for the following compound. Label all of the H's in the structure and the corresponding signal for the spectra you sketch. Make sure you include the integration value and the splitting pattern for each signal Indicate how many signals you would expect in the 13C NMRarrow_forward
- Use IUPAC naming rules to name the following hydrocarbon compounds: CH2-CH3 | a) CH-CH-CH2-CH-CH-CH3 b) | CH2 CH3 | CH3 CH3 \ / C=C H 1 H CH2-CH3 c) d) CH=C-CH3 e) CH3-CH2-CH2-CH=CH-CH3 f) CH2=CH-CH2-CH=CH-CH3 g) CH3-CH2-C = C-CH2-CH3 h)arrow_forwardQ5 Name the following : a. b. C. d. e.arrow_forward25. Predict the major product of the following reaction. 1 equivalent of each of the starting materials was used. H₂C CH3 CH3 H3C H3C H3C. CH2 + H3C. heat CH3 CH H.C. CH3 H.C H.C CH3 CH CH3 CH3 A B C Earrow_forward
- Find chemical structures based on the below information. a) Chemical formula C6H8O Compound is aromatic plus has two 1H NMR peaks that integrated for 3 each that are singlets (it could have more peaks in the 1H NMR b) Chemical Formula: C6H100 Compounds is conjugated 'H NMR has a signal that integrates for 6 and is a doublet IR spectra has a signal at 1730 cm-1arrow_forwardJaslev Propose a synthesis of the following starting from benzene and any other reagents and chemicals. No mechanisms are required. Indicate the condition for each step plus the major product for each step. More than two steps are required. Step 1 Step 2 مہد Brarrow_forwardPart C: The line formula for another branched alkane is shown below. i. In the IUPAC system what is the root or base name of this compound? ii. How many alkyl substituents are attached to the longest chain? iii. Give the IUPAC name for this compound.arrow_forward
- Part D: Draw the Structural Formula for 4-ethyl-2-methylhexane Part E. Draw the Structural Formula for 1-chloro-3,3-diethylpentane (Chloro = Cl)arrow_forwardPart B: The line formula for a branched alkane is shown below. a. What is the molecular formula of this compound? Number of C. Number of H b. How many carbon atoms are in the longest chain? c. How many alkyl substituents are attached to this chain?arrow_forward24. What is the major product for the following reaction? Mg J. H.C CH H,C- Then H₂O OH Br C HO E HO H.C CH H.C- CH₂ CH₂ All of these are possiblearrow_forward
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning





