Concept explainers
Both portions of the rod ABC are made of an aluminum for which E = 70 GPa. Knowing that the magnitude of P is 4 kN, determine (a) the value of Q so that the deflection at A is zero, (b) the corresponding deflection of B.
Fig. P2.19 and P2.20
a)
The value of (Q) when the deflection at A is zero.
Answer to Problem 19P
The value of (Q) when the deflection at A is zero is
Explanation of Solution
Given information:
The Young’s modulus of the aluminium (E) is
The force at the point A (P) is
The force at the point B is Q.
The diameter of the rod AB
The diameter of the rod BC
The length of the rod AB
The length of the rod BC
Calculation:
Calculate the cross-sectional area of the rod AB
Substitute
Calculate the cross-sectional area of the rod BC
Substitute
Calculate the defection of the rod AB
Substitute
Calculate the defection of the rod BC
Substitute
Calculate the force at the point B (Q):
Substitute
Hence, the value of (Q) when the deflection at A is zero is
b)
The deflection of B
Answer to Problem 19P
The deflection of B
Explanation of Solution
Given information:
The Young’s modulus of the aluminium (E) is
The force at the point A (P) is
The force at the point B is Q.
The diameter of the rod AB
The diameter of the rod BC
The length of the rod AB
The length of the rod BC
Calculation:
Calculate the cross-sectional area of the rod AB
Substitute
Calculate the cross-sectional area of the rod BC
Substitute
Calculate the defection of the rod AB
Substitute
Calculate the defection of the rod BC
Substitute
Calculate the force at the point B (Q):
Substitute
Calculate the deflection of B
Substitute
Hence, the deflection of B
Want to see more full solutions like this?
Chapter 2 Solutions
Mechanics of Materials, 7th Edition
- Prob.2: [2.24] Each of the links AB and CD is made of aluminum (E = 75 GPa) and has a cross-section area if 125 mm². Knowing that they support the rigid member BC, determine the deflection of point E. |A P = 5 kN 0.36 m E |B -0.44 m 0.20 marrow_forward2.15 A single axial load of magnitude P = 58 kN is applied at end C of the brass rod ABC. Knowing that E = 105 GPa, determine the diam- eter d of portion BC for which the deflection of point C will be 3 mm. 30 mm 1.2 m Fig. P2.15 B -0.8 m Note:- • Do not provide handwritten solution. Maintain accuracy and quality in your answer. Take care of plagiarism. • Answer completely. • You will get up vote for sure.arrow_forward2.75 plzarrow_forward
- 2.75 The plastic block shown is bonded to a rigid support and to a vertical plate to which a 55-kip load P is applied. Knowing that for the plastic used G = 150 ksi, determine the deflection of the plate.2.76 What load P should be applied to the plate of Prob. 2.75 to produce a 116-in. deflection? Solve 2.76arrow_forwardPortion BC of the rod ABC are made of an aluminum for which E= 70 GPa and portion AB is made of steel for which E = 200 GPa. Given: P = 9 kN, a = 0.6 m, b=0.7 m and the diameter of rod AB is c = 36 mm, (a) Determine the value of Q so that the deflection at A is zero (b) The corresponding deflection of point B 60-mm diameterarrow_forwardThe rod ABC is made of an aluminum for which E = 71.15 GPa. Knowing that P=10.2 kN and Q=51.62kN, determine the deflection (in um) of point B y=0.46 and z=0.56. Round off the final answer in four decimal places.arrow_forward
- Both portions of the rod ABC are made out of an aluminum forwhich E = 70 GPa. Knowing that the magnitude of P is 4 kN, determine (a)the value of Q so that the deflection at A is zero, (b) the correspondingdeflection of B.arrow_forwardBoth portions of the rod ABC are made of an aluminum for which E = 70.4GPa. Knowing that the magnitude of Q is 31876 N, m = 0.35 m, and n = 0.55 m, determine the value of P (in N) so that the deflection at A is zero.arrow_forward2.39 plzarrow_forward
- = P2.39 Two cylindrical rods, AC made of aluminum and CD made of steel, are joined at C and restrained by rigid supports at A and D. For the loading shown and knowing that Ea 10.4 × 106 psi and Es = 29 × 106 psi, determine (a) the reactions at A and D, (b) the deflection of point C. -8 in.- E A 1-¹-in. diameter Fig. P2.39 10 in.-10 in.. B. 18 kips C D 14 kips 15-in. diameterarrow_forward2.41 Two cylindrical rods, one of steel and the other of brass, are joined at C and restrained by rigid supports at A and E. For the loading shown and knowing that E, = 200 GPa and E, = 105 GPa, deter- mine (a) the reactions at A and E, (b) the deflection of point C. Dimensions in mm 100 100 -150--120- A DI E Steel B. Brass 60 kN 40 kN 40-mm diam. 30-mm diam. Fig. P2.41arrow_forwardThe rod ABC is made of an aluminum for which E = 71.4 GPa. Knowing that P = 7.94 kNand Q = 49.88 kN,determine the deflection (in μm) of point B if y = 0.47 and z = 0.54. Round off the final answer in four decimal places.arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY