(a)
Interpretation:
The given starting compounds and selective reagents used to accomplish the target products transformation should be draw and identified.
Concept Introduction:
Wittig reaction: This process allows the preparation of an alkene by the reaction of an aldehyde (
Condensation reaction: The several organic reactions that proceeds in a step-wise reaction to produce the addition product. This type of reaction involves the formation of ammonia, ethanol or mineral acids, it is a versatile class of reaction that can occur in acidic or basic conditions or in the presence of catalyst.
Hydrolysis Reaction: This type of reaction involving the braking of a carbon-carbon triple, double bonds in a molecules using water or diluted acid such as (HCl,
Meta-chloroperoxybenzoic acid (m-CPBA): This reagent is extremely useful reagent most frequently encountered in the synthesis of
Hydrate formation: hydronium ion is the main reagent for hydrate formation.
Conversion of a carbonyl group to a hydrate. this process is only efficient for formaldehyde and some simple
For ketone, the equilibrium generally does not favor formation of the hydrate.
LAH :-( Lithium Aluminum Hydride) this reagent is very useful for reduction.
It reduces aldehyde or ketone to an alcohol.
Acid Catalyzed Hydration Reaction: The reaction involves breaking of π-bonds between carbon-carbon multiple bonds and addition of alcohol to more substituted position of carbon in the molecule.
Nucleophiles: A nucleophile is a more reactant species that affords a pair of electrons to the electrophile or electrophilic center and forms a new covalent bond. The carbon or other hetero atom in a molecule which is bearing negative charge or lone pair of electron is called as nucleophiles.
Electrophile: An electrophile is a species that accepts a pair of electrons to form a new covalent bond.
Addition Reaction: It is defined as
Halogenation: The addition of halogen atoms to a
Ozonolysis is an organic reaction where the unsaturated bonds of alkenes or azo compounds are cleaved with ozone.
Alkenes and alkynes from organic compound in which the multiple carbon-carbon bonds has been from nitrosamines.
Grignard Reaction: This is an organometallic reaction in different alkyl, aryl-magnesium halides add to a carbonyl group in an aldehyde and ketone. This reaction is an important for the conversion of carbon-carbon single (-C-C-) bond. Moreover the addition of a reagent to an aster, lactone gives a tertiary alcohol in which two alkyl groups are the same and the addition of a Grignard reagent to a nitrile produces an unsymmetrical ketone.
To identify: The reagents used to accomplish the given transformation.
(b)
Interpretation:
The given starting compounds and selective reagents used to accomplish the target products transformation should be draw and identified.
Concept Introduction:
Wittig reaction: This process allows the preparation of an alkene by the reaction of an aldehyde (
Condensation reaction: The several organic reactions that proceeds in a step-wise reaction to produce the addition product. This type of reaction involves the formation of ammonia, ethanol or mineral acids, it is a versatile class of reaction that can occur in acidic or basic conditions or in the presence of catalyst.
Hydrolysis Reaction: This type of reaction involving the braking of a carbon-carbon triple, double bonds in a molecules using water or diluted acid such as (HCl,
Meta-chloroperoxybenzoic acid (m-CPBA): This reagent is extremely useful reagent most frequently encountered in the synthesis of epoxides when added to alkenes or alkynes.
Hydrate formation: hydronium ion is the main reagent for hydrate formation.
Conversion of a carbonyl group to a hydrate. this process is only efficient for formaldehyde and some simple aldehydes.
For ketone, the equilibrium generally does not favor formation of the hydrate.
LAH :-( Lithium Aluminum Hydride) this reagent is very useful for reduction.
It reduces aldehyde or ketone to an alcohol.
Acid Catalyzed Hydration Reaction: The reaction involves breaking of π-bonds between carbon-carbon multiple bonds and addition of alcohol to more substituted position of carbon in the molecule.
Nucleophiles: A nucleophile is a more reactant species that affords a pair of electrons to the electrophile or electrophilic center and forms a new covalent bond. The carbon or other hetero atom in a molecule which is bearing negative charge or lone pair of electron is called as nucleophiles.
Electrophile: An electrophile is a species that accepts a pair of electrons to form a new covalent bond.
Addition Reaction: It is defined as chemical reaction in which two given molecules combines and forms product. The types of addition reactions are electrophilic addition, nucleophilic addition, free radical additions and cycloadditions. Generally, compounds with carbon-hetero atom bonds favors addition reaction.
Halogenation: The addition of halogen atoms to a
Ozonolysis is an organic reaction where the unsaturated bonds of alkenes or azo compounds are cleaved with ozone.
Alkenes and alkynes from organic compound in which the multiple carbon-carbon bonds has been from nitrosamines.
Grignard Reaction: This is an organometallic reaction in different alkyl, aryl-magnesium halides add to a carbonyl group in an aldehyde and ketone. This reaction is an important for the conversion of carbon-carbon single (-C-C-) bond. Moreover the addition of a reagent to an aster, lactone gives a tertiary alcohol in which two alkyl groups are the same and the addition of a Grignard reagent to a nitrile produces an unsymmetrical ketone.
To identify: The reagents used to accomplish the given transformation.
(c)
Interpretation:
The given starting compounds and selective reagents used to accomplish the target products transformation should be draw and identified.
Concept Introduction:
Wittig reaction: This process allows the preparation of an alkene by the reaction of an aldehyde (
Condensation reaction: The several organic reactions that proceeds in a step-wise reaction to produce the addition product. This type of reaction involves the formation of ammonia, ethanol or mineral acids, it is a versatile class of reaction that can occur in acidic or basic conditions or in the presence of catalyst.
Hydrolysis Reaction: This type of reaction involving the braking of a carbon-carbon triple, double bonds in a molecules using water or diluted acid such as (HCl,
Meta-chloroperoxybenzoic acid (m-CPBA): This reagent is extremely useful reagent most frequently encountered in the synthesis of epoxides when added to alkenes or alkynes.
Hydrate formation: hydronium ion is the main reagent for hydrate formation.
Conversion of a carbonyl group to a hydrate. this process is only efficient for formaldehyde and some simple aldehydes.
For ketone, the equilibrium generally does not favor formation of the hydrate.
LAH :-( Lithium Aluminum Hydride) this reagent is very useful for reduction.
It reduces aldehyde or ketone to an alcohol.
Acid Catalyzed Hydration Reaction: The reaction involves breaking of π-bonds between carbon-carbon multiple bonds and addition of alcohol to more substituted position of carbon in the molecule.
Nucleophiles: A nucleophile is a more reactant species that affords a pair of electrons to the electrophile or electrophilic center and forms a new covalent bond. The carbon or other hetero atom in a molecule which is bearing negative charge or lone pair of electron is called as nucleophiles.
Electrophile: An electrophile is a species that accepts a pair of electrons to form a new covalent bond.
Addition Reaction: It is defined as chemical reaction in which two given molecules combines and forms product. The types of addition reactions are electrophilic addition, nucleophilic addition, free radical additions and cycloadditions. Generally, compounds with carbon-hetero atom bonds favors addition reaction.
Halogenation: The addition of halogen atoms to a
Ozonolysis is an organic reaction where the unsaturated bonds of alkenes or azo compounds are cleaved with ozone.
Alkenes and alkynes from organic compound in which the multiple carbon-carbon bonds has been from nitrosamines.
Grignard Reaction: This is an organometallic reaction in different alkyl, aryl-magnesium halides add to a carbonyl group in an aldehyde and ketone. This reaction is an important for the conversion of carbon-carbon single (-C-C-) bond. Moreover the addition of a reagent to an aster, lactone gives a tertiary alcohol in which two alkyl groups are the same and the addition of a Grignard reagent to a nitrile produces an unsymmetrical ketone.
To identify: The reagents used to accomplish the given transformation.
(d)
Interpretation:
The given starting compounds and selective reagents used to accomplish the target products transformation should be draw and identified.
Concept Introduction:
Wittig reaction: This process allows the preparation of an alkene by the reaction of an aldehyde (
Condensation reaction: The several organic reactions that proceeds in a step-wise reaction to produce the addition product. This type of reaction involves the formation of ammonia, ethanol or mineral acids, it is a versatile class of reaction that can occur in acidic or basic conditions or in the presence of catalyst.
Hydrolysis Reaction: This type of reaction involving the braking of a carbon-carbon triple, double bonds in a molecules using water or diluted acid such as (HCl,
Meta-chloroperoxybenzoic acid (m-CPBA): This reagent is extremely useful reagent most frequently encountered in the synthesis of epoxides when added to alkenes or alkynes.
Hydrate formation: hydronium ion is the main reagent for hydrate formation.
Conversion of a carbonyl group to a hydrate. this process is only efficient for formaldehyde and some simple aldehydes.
For ketone, the equilibrium generally does not favor formation of the hydrate.
LAH :-( Lithium Aluminum Hydride) this reagent is very useful for reduction.
It reduces aldehyde or ketone to an alcohol.
Acid Catalyzed Hydration Reaction: The reaction involves breaking of π-bonds between carbon-carbon multiple bonds and addition of alcohol to more substituted position of carbon in the molecule.
Nucleophiles: A nucleophile is a more reactant species that affords a pair of electrons to the electrophile or electrophilic center and forms a new covalent bond. The carbon or other hetero atom in a molecule which is bearing negative charge or lone pair of electron is called as nucleophiles.
Electrophile: An electrophile is a species that accepts a pair of electrons to form a new covalent bond.
Addition Reaction: It is defined as chemical reaction in which two given molecules combines and forms product. The types of addition reactions are electrophilic addition, nucleophilic addition, free radical additions and cycloadditions. Generally, compounds with carbon-hetero atom bonds favors addition reaction.
Halogenation: The addition of halogen atoms to a
Ozonolysis is an organic reaction where the unsaturated bonds of alkenes or azo compounds are cleaved with ozone.
Alkenes and alkynes from organic compound in which the multiple carbon-carbon bonds has been from nitrosamines.
Grignard Reaction: This is an organometallic reaction in different alkyl, aryl-magnesium halides add to a carbonyl group in an aldehyde and ketone. This reaction is an important for the conversion of carbon-carbon single (-C-C-) bond. Moreover the addition of a reagent to an aster, lactone gives a tertiary alcohol in which two alkyl groups are the same and the addition of a Grignard reagent to a nitrile produces an unsymmetrical ketone.
To identify: The reagents used to accomplish the given transformation.
(e)
Interpretation:
The given starting compounds and selective reagents used to accomplish the target products transformation should be draw and identified.
Concept Introduction:
Wittig reaction: This process allows the preparation of an alkene by the reaction of an aldehyde (
Condensation reaction: The several organic reactions that proceeds in a step-wise reaction to produce the addition product. This type of reaction involves the formation of ammonia, ethanol or mineral acids, it is a versatile class of reaction that can occur in acidic or basic conditions or in the presence of catalyst.
Hydrolysis Reaction: This type of reaction involving the braking of a carbon-carbon triple, double bonds in a molecules using water or diluted acid such as (HCl,
Meta-chloroperoxybenzoic acid (m-CPBA): This reagent is extremely useful reagent most frequently encountered in the synthesis of epoxides when added to alkenes or alkynes.
Hydrate formation: hydronium ion is the main reagent for hydrate formation.
Conversion of a carbonyl group to a hydrate. this process is only efficient for formaldehyde and some simple aldehydes.
For ketone, the equilibrium generally does not favor formation of the hydrate.
LAH :-( Lithium Aluminum Hydride) this reagent is very useful for reduction.
It reduces aldehyde or ketone to an alcohol.
Acid Catalyzed Hydration Reaction: The reaction involves breaking of π-bonds between carbon-carbon multiple bonds and addition of alcohol to more substituted position of carbon in the molecule.
Nucleophiles: A nucleophile is a more reactant species that affords a pair of electrons to the electrophile or electrophilic center and forms a new covalent bond. The carbon or other hetero atom in a molecule which is bearing negative charge or lone pair of electron is called as nucleophiles.
Electrophile: An electrophile is a species that accepts a pair of electrons to form a new covalent bond.
Addition Reaction: It is defined as chemical reaction in which two given molecules combines and forms product. The types of addition reactions are electrophilic addition, nucleophilic addition, free radical additions and cycloadditions. Generally, compounds with carbon-hetero atom bonds favors addition reaction.
Halogenation: The addition of halogen atoms to a
Ozonolysis is an organic reaction where the unsaturated bonds of alkenes or azo compounds are cleaved with ozone.
Alkenes and alkynes from organic compound in which the multiple carbon-carbon bonds has been from nitrosamines.
Grignard Reaction: This is an organometallic reaction in different alkyl, aryl-magnesium halides add to a carbonyl group in an aldehyde and ketone. This reaction is an important for the conversion of carbon-carbon single (-C-C-) bond. Moreover the addition of a reagent to an aster, lactone gives a tertiary alcohol in which two alkyl groups are the same and the addition of a Grignard reagent to a nitrile produces an unsymmetrical ketone.
To identify: The reagents used to accomplish the given transformation.
(f)
Interpretation:
The given starting compounds and selective reagents used to accomplish the target products transformation should be draw and identified.
Concept Introduction:
Wittig reaction: This process allows the preparation of an alkene by the reaction of an aldehyde (
Condensation reaction: The several organic reactions that proceeds in a step-wise reaction to produce the addition product. This type of reaction involves the formation of ammonia, ethanol or mineral acids, it is a versatile class of reaction that can occur in acidic or basic conditions or in the presence of catalyst.
Hydrolysis Reaction: This type of reaction involving the braking of a carbon-carbon triple, double bonds in a molecules using water or diluted acid such as (HCl,
Meta-chloroperoxybenzoic acid (m-CPBA): This reagent is extremely useful reagent most frequently encountered in the synthesis of epoxides when added to alkenes or alkynes.
Hydrate formation: hydronium ion is the main reagent for hydrate formation.
Conversion of a carbonyl group to a hydrate. this process is only efficient for formaldehyde and some simple aldehydes.
For ketone, the equilibrium generally does not favor formation of the hydrate.
LAH :-( Lithium Aluminum Hydride) this reagent is very useful for reduction.
It reduces aldehyde or ketone to an alcohol.
Acid Catalyzed Hydration Reaction: The reaction involves breaking of π-bonds between carbon-carbon multiple bonds and addition of alcohol to more substituted position of carbon in the molecule.
Nucleophiles: A nucleophile is a more reactant species that affords a pair of electrons to the electrophile or electrophilic center and forms a new covalent bond. The carbon or other hetero atom in a molecule which is bearing negative charge or lone pair of electron is called as nucleophiles.
Electrophile: An electrophile is a species that accepts a pair of electrons to form a new covalent bond.
Addition Reaction: It is defined as chemical reaction in which two given molecules combines and forms product. The types of addition reactions are electrophilic addition, nucleophilic addition, free radical additions and cycloadditions. Generally, compounds with carbon-hetero atom bonds favors addition reaction.
Halogenation: The addition of halogen atoms to a
Ozonolysis is an organic reaction where the unsaturated bonds of alkenes or azo compounds are cleaved with ozone.
Alkenes and alkynes from organic compound in which the multiple carbon-carbon bonds has been from nitrosamines.
Grignard Reaction: This is an organometallic reaction in different alkyl, aryl-magnesium halides add to a carbonyl group in an aldehyde and ketone. This reaction is an important for the conversion of carbon-carbon single (-C-C-) bond. Moreover the addition of a reagent to an aster, lactone gives a tertiary alcohol in which two alkyl groups are the same and the addition of a Grignard reagent to a nitrile produces an unsymmetrical ketone.
To identify: The reagents used to accomplish the given transformation.
(g)
Interpretation:
The given starting compounds and selective reagents used to accomplish the target products transformation should be draw and identified.
Concept Introduction:
Wittig reaction: This process allows the preparation of an alkene by the reaction of an aldehyde (
Condensation reaction: The several organic reactions that proceeds in a step-wise reaction to produce the addition product. This type of reaction involves the formation of ammonia, ethanol or mineral acids, it is a versatile class of reaction that can occur in acidic or basic conditions or in the presence of catalyst.
Hydrolysis Reaction: This type of reaction involving the braking of a carbon-carbon triple, double bonds in a molecules using water or diluted acid such as (HCl,
Meta-chloroperoxybenzoic acid (m-CPBA): This reagent is extremely useful reagent most frequently encountered in the synthesis of epoxides when added to alkenes or alkynes.
Hydrate formation: hydronium ion is the main reagent for hydrate formation.
Conversion of a carbonyl group to a hydrate. this process is only efficient for formaldehyde and some simple aldehydes.
For ketone, the equilibrium generally does not favor formation of the hydrate.
LAH :-( Lithium Aluminum Hydride) this reagent is very useful for reduction.
It reduces aldehyde or ketone to an alcohol.
Acid Catalyzed Hydration Reaction: The reaction involves breaking of π-bonds between carbon-carbon multiple bonds and addition of alcohol to more substituted position of carbon in the molecule.
Nucleophiles: A nucleophile is a more reactant species that affords a pair of electrons to the electrophile or electrophilic center and forms a new covalent bond. The carbon or other hetero atom in a molecule which is bearing negative charge or lone pair of electron is called as nucleophiles.
Electrophile: An electrophile is a species that accepts a pair of electrons to form a new covalent bond.
Addition Reaction: It is defined as chemical reaction in which two given molecules combines and forms product. The types of addition reactions are electrophilic addition, nucleophilic addition, free radical additions and cycloadditions. Generally, compounds with carbon-hetero atom bonds favors addition reaction.
Halogenation: The addition of halogen atoms to a
Ozonolysis is an organic reaction where the unsaturated bonds of alkenes or azo compounds are cleaved with ozone.
Alkenes and alkynes from organic compound in which the multiple carbon-carbon bonds has been from nitrosamines.
Grignard Reaction: This is an organometallic reaction in different alkyl, aryl-magnesium halides add to a carbonyl group in an aldehyde and ketone. This reaction is an important for the conversion of carbon-carbon single (-C-C-) bond. Moreover the addition of a reagent to an aster, lactone gives a tertiary alcohol in which two alkyl groups are the same and the addition of a Grignard reagent to a nitrile produces an unsymmetrical ketone.
To identify: The reagents used to accomplish the given transformation.
Want to see the full answer?
Check out a sample textbook solutionChapter 20 Solutions
ORG.CHEM EBOOK W/BBWILEY PLUS>CUSTOM<
- Show work. Don't give Ai generated solutionarrow_forwardNonearrow_forwardTransmitance 3. Which one of the following compounds corresponds to this IR spectrum? Point out the absorption band(s) that helped you decide. OH H3C OH H₂C CH3 H3C CH3 H3C INFRARED SPECTRUM 0.8- 0.6 0.4- 0.2 3000 2000 1000 Wavenumber (cm-1) 4. Consider this compound: H3C On the structure above, label the different types of H's as A, B, C, etc. In table form, list the labeled signals, and for each one state the number of hydrogens, their shifts, and the splitting you would observe for these hydrogens in the ¹H NMR spectrum. Label # of hydrogens splitting Shift (2)arrow_forward
- Nonearrow_forwardDraw the Lewis structure of C2H4Oarrow_forwarda) 5. Circle all acidic (and anticoplanar to the Leaving group) protons in the following molecules, Solve these elimination reactions, and identify the major and minor products where appropriate: 20 points + NaOCH3 Br (2 productarrow_forward
- Nonearrow_forwardDr. Mendel asked his BIOL 260 class what their height was and what their parent's heights were. He plotted that data in the graph below to determine if height was a heritable trait. A. Is height a heritable trait? If yes, what is the heritability value? (2 pts) B. If the phenotypic variation is 30, what is the variation due to additive alleles? (2 pts) Offspring Height (Inches) 75 67.5 60 52.5 y = 0.9264x + 4.8519 55 60 65 MidParent Height (Inches) 70 75 12pt v V Paragraph B IUA > AT2 v Varrow_forwardExperiment: Each team will be provided with 5g of a mixture of acetanilide and salicylic acid. You will divide it into three 1.5 g portions in separate 125 mL Erlenmeyer flasks savıng some for melting point analysis. Dissolve the mixture in each flask in ~60mL of DI water by heating to boiling on a hotplate. Take the flasks off the hotplate once you have a clear solution and let them stand on the bench top for 5 mins and then allow them to cool as described below. Sample A-Let the first sample cool slowly to room temperature by letting it stand on your lab bench, with occasional stirring to promote crystallization. Sample B-Cool the second sample 1n a tap-water bath to 10-15 °C Sample C-Cool the third sample in an ice-bath to 0-2 °C Results: weight after recrystalization and melting point temp. A=0.624g,102-115° B=0.765g, 80-105° C=1.135g, 77-108 What is the percent yield of A,B, and C.arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY