Physics for Science and Engineering With Modern Physics, VI - Student Study Guide
4th Edition
ISBN: 9780132273244
Author: Doug Giancoli
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 20, Problem 60P
(II) Solar cells (Fig. 20-22) can produce about 40W of electricity per square meter of surface area if directly facing the Sun. How large an area is required to supply the needs of a house that requires 22kWh/day? Would this fit on the roof of an average house? (Assume the Sun shines about 9 h/day.)
FIGURE 20-22 Problem 60.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
(II) An average active person consumes about 2500 Cal a day. (a) What is this in joules? (b) What is this in kilowatthours? (c) If your power company charges about 10 ¢ per kilowatt-hour, how much would your energy cost per dayif you bought it from the power company? Could you feed yourself on this much money per day?
(II) When a diver jumps into the ocean, water leaks into the gap region between the diver’s skin and her wetsuit, forming a water layer about 0.5 mm thick. Assuming the total surface area of the wetsuit covering the diver is about 1.0m2 and that ocean water enters the suit at 10°C and iswarmed by the diver to skin temperature of 35°C, estimate how much energy (in units of candy bars = 300 kcal ) is required by this heating process.
(a) Calculate the rate of heat transfer by radiation from a car radiator at 110C into a 50.0C environment, if the radiator has an emissivity of 0.750 and a 1.20 m2 surface area. (b) Is this a significant fraction of the heat transfer by an automobile engine? To answer this, assume a horsepower of 200hp (1.5 kW) and the efficiency of automobile engines as 25%.
Chapter 20 Solutions
Physics for Science and Engineering With Modern Physics, VI - Student Study Guide
Ch. 20.2 - An adiabatic process is defined as one in which no...Ch. 20.3 - A motor is running with an intake temperature TH =...Ch. 20.6 - A 1.00.kg piece of ice at 0C melts very slowly to...Ch. 20.9 - Prob. 1EECh. 20 - Prob. 1QCh. 20 - Can you warm a kitchen in winter by leaving the...Ch. 20 - Would a definition of heat engine efficiency as e...Ch. 20 - What plays the role of high-temperature and...Ch. 20 - Which will give the greater improvement in the...Ch. 20 - The oceans contain a tremendous amount of thermal...
Ch. 20 - Discuss the factors that keep real engines from...Ch. 20 - Prob. 8QCh. 20 - Describe a process in nature that is nearly...Ch. 20 - (a) Describe how heat could be added to a system...Ch. 20 - Suppose a gas expands to twice its original volume...Ch. 20 - Give three examples, other than those mentioned in...Ch. 20 - Which do you think has the greater entropy, 1 kg...Ch. 20 - (a) What happens if you remove the lid of a bottle...Ch. 20 - Prob. 15QCh. 20 - Prob. 16QCh. 20 - Prob. 17QCh. 20 - The first law of thermodynamics is sometimes...Ch. 20 - Powdered milk is very slowly (quasistatically)...Ch. 20 - Two identical systems are taken from state a to...Ch. 20 - It can he said that the total change in entropy...Ch. 20 - Use arguments, other than the principle of entropy...Ch. 20 - (I) A heat engine exhausts 7800 J of heat while...Ch. 20 - (I) A certain power plant puts out 580 MW of...Ch. 20 - (II) A typical compact car experiences a total...Ch. 20 - (II) A four-cylinder gasoline engine has an...Ch. 20 - (II) The burning of gasoline in a car releases...Ch. 20 - (II) Figure 2017 is a PV diagram for a reversible...Ch. 20 - (III) The operation of a diesel engine can be...Ch. 20 - (I) What is the maximum efficiency of a heat...Ch. 20 - (I) It is not necessary that a heat engines hot...Ch. 20 - (II) A heal engine exhausts its heat at 340C and...Ch. 20 - (II) (a) Show that the work done by a Carnot...Ch. 20 - (II) A Carnot engines operating temperatures are...Ch. 20 - (II) A nuclear power plant operates at 65% of its...Ch. 20 - (II) A Carnot engine performs work at the rate of...Ch. 20 - (II) Assume that a 65 kg hiker needs 4.0 103 kcal...Ch. 20 - (II) A particular car does work at the rate of...Ch. 20 - (II) A heat engine utilizes a heat source at 580C...Ch. 20 - (II) The working substance of a certain Carnot...Ch. 20 - (III) A Carnot cycle, shown in Fig. 20-7, has the...Ch. 20 - (III) One mole of monatomic gas undergoes a Carnot...Ch. 20 - (III) In an engine that approximates the Otto...Ch. 20 - (I) If an ideal refrigerator keeps its contents at...Ch. 20 - (I) The low temperature of a freezer cooling coil...Ch. 20 - (II) An ideal (Carnot) engine has an efficiency of...Ch. 20 - (II) An ideal heal pump is used to maintain the...Ch. 20 - (II) A restaurant refrigerator has a coefficient...Ch. 20 - (II) A heat pump is used to keep a house warm at...Ch. 20 - (II) (a) Given that the coefficient of performance...Ch. 20 - (II) A Carnot refrigerator (reverse of a Carnot...Ch. 20 - (II) A central heat pump updating as an air...Ch. 20 - (II) What volume of water at 0C can a freezer make...Ch. 20 - (I) What is the change in entropy of 250g of steam...Ch. 20 - (I) A 7.5-kg box having an initial speed of 4.0m/s...Ch. 20 - (I) What is the change in entropy of 1.00 m3 of...Ch. 20 - (II) If 1.00m3 of water at 0C is frozen and cooled...Ch. 20 - (II) If 0.45kg f water at 100C is changed by a...Ch. 20 - (II) An aluminum rod conducts 9.50 cal/s from a...Ch. 20 - (II) A 2.8-kg piece of aluminum at 43.0C is placed...Ch. 20 - (II) An ideal gas expands isothermally (T = 410 K)...Ch. 20 - (II) When 2.0 kg of water at 12.0C is mixed with...Ch. 20 - (II) (a) An ice cube of mass m at 0C is placed in...Ch. 20 - (II) The temperature of 2.0mol of an ideal...Ch. 20 - (II) Calculate the change in entropy of 1.00kg of...Ch. 20 - (II) An ideal gas of n moles undergoes the...Ch. 20 - (II) Two samples of an ideal gas are initially at...Ch. 20 - (II) A 150-g insulated aluminum cup at 15C is...Ch. 20 - (II) (a) Why would you expect the total entropy...Ch. 20 - (II) 1.00 mole of nitrogen (N2) gas and 1.00 mole...Ch. 20 - (II) Thermodynamic processes are sometimes...Ch. 20 - (III) The specific heat per mole of potassium at...Ch. 20 - (III) Consider an ideal gas of n moles with molar...Ch. 20 - (III) A general theorem states that the amount of...Ch. 20 - (III) Determine the work available in a 3.5-kg...Ch. 20 - (I) Use Eq. 2014 to determine the entropy of each...Ch. 20 - (II) Suppose that you repeatedly shake six coins...Ch. 20 - (II) Calculate the relative probabilities, when...Ch. 20 - (II) (a) Suppose you have four coins, all with...Ch. 20 - Prob. 58PCh. 20 - (II) Energy may be stored for use during peak...Ch. 20 - (II) Solar cells (Fig. 20-22) can produce about...Ch. 20 - Prob. 61PCh. 20 - It has been suggested that a heat engine could be...Ch. 20 - A heat engine takes a diatomic gas around the...Ch. 20 - A 126.5-g insulated aluminum cup at 18.00C is...Ch. 20 - (a) At a steam power plant, steam engines work in...Ch. 20 - (II) Refrigeration units can be rated in tons. A...Ch. 20 - Prob. 67GPCh. 20 - (a) What is the coefficient of performance of an...Ch. 20 - The operation of a certain heat engine takes an...Ch. 20 - A car engine whose output power is 155 hp operates...Ch. 20 - Suppose a power plant delivers energy at 850 MW...Ch. 20 - 1.00 mole of an ideal monatomic gas at STP first...Ch. 20 - Two 1100-kg cars are traveling 75 km/h in opposite...Ch. 20 - Metabolizing 1.0 kg of fat results in about 3.7 ...Ch. 20 - A cooling unit for a new freezer has an inner...Ch. 20 - Prob. 76GPCh. 20 - The Stirling cycle shown in Fig 20-27, is useful...Ch. 20 - A gas turbine operates under the Brayton cycle,...Ch. 20 - Thermodynamic processes can be represented not...Ch. 20 - An aluminum can, with negligible heat capacity, is...Ch. 20 - Prob. 81GPCh. 20 - A bowl contains a large number of red, orange, and...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Raw Oysters and Antacids: A Deadly Mix? The highly acidic environment of the stomach kills most bacteria before...
Microbiology with Diseases by Body System (5th Edition)
Hydrochloric acid can dissolve solid iron according to the reaction: Fe(s)+2HCI(aq)FeCl2(aq)+H2(g) What minimum...
Introductory Chemistry (6th Edition)
[14.110] The following mechanism has been proposed for the gas-phase reaction of chloroform (CHCI3) and chlorin...
Chemistry: The Central Science (14th Edition)
Police Captain Jeffers has suffered a myocardial infarction. a. Explain to his (nonmedically oriented) family w...
Human Physiology: An Integrated Approach (8th Edition)
DRAW IT In human spermatogenesis, mitosis of a stem cell gives rise to one cell that remains a stem cell and on...
Campbell Biology (11th Edition)
Match the following cell types with their correct definition. _________Macrophage _________NK cell _________Eos...
Human Anatomy & Physiology (2nd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- (II) (a) How much energy is required to bring a 1.0-L pot ofwater at 20°C to 100°C? (b) For how long could this amountof energy run a 60-W lightbulb?arrow_forward(I) To what temperature will 8200 J of heat raise 3.0 kg ofwater that is initially at 10.0°C?arrow_forward(I) If 3.40 × 10° J of energy is supplied to a container of liquid oxygen at –183°C, how much oxygen can evaporate?arrow_forward
- For a total PV module of 25m2, what would be the PV power for each if conversion efficiency is 15% on days when an angle of a south-facing collector in [city] be tipped up to have it normal to the Sun's rays at solar noon?arrow_forwardQUESTION 19 Consider N solar collectors (N = 12, 14, 16), of dimension [2m x 2m, 2m x 1.5 m, 2m x2.5m] and an efficiency of (75, 65, 85) percent system, used to heat a water tank of (6000, 4000, 5000] liters. Calculate the final temperature reached after 8.8 sun-hours in Dubai under the following conditions: T = Initial temperature is (25)°C. DNI = Solar irradiation is (900) W/m2. Cp = Specific heat of water is 4190 g/kg.°C) Use the following Formula Rate of useful heat gäin Quseful = mfCp(Tf, out - Tr, in) %3D Rate of useful heat gain Quseful = Ncoll.Acoll-N.DNI Power output of the plant (electric power generated) P = n Acoll N dNi LN= [N] ii. Area = (B) L. Efficiency= [CI iv. Volume [DI (a) Final temperature will will be? (A] °C [Note: answer the question in two decimal units)arrow_forward(3) Show that the volume dependence of internal energy is written as Cp - C αν au (OV) . -P.arrow_forward
- A pot containing 0.6 kg of water at 25 degrees celsius was accidentally left on the stove until it boiled dry. Calculate the heat energy required to (i) heat the water up to 100 degrees Celsius (ii) to convert the water to steam. (iii) if the stove has a useful power rating of 900W, how much time does it take for the pot to boil dry?[specific heat capacity of water = 4,200kg K; Specific latent heat of vaporization of water =2.3 multiply by 10 to the sixth power J kg]arrow_forward(a) (b) (c) In the diagram shown above, the points on the PV diagram have the following values: point 1) P= 104000 Pa and V= 0.047 m²; point 2) P= 104000 Pa and V= 0.076 m; point 3) P= 289000 Pa and V= 0.047 me: point 4) P= 78000 Pa and V = 0.076 m a) How much work is done by the gas for the process from point 1 to point 22 b) How much work is done by the gas for the process from point I to point 32 c) How much work is done by the gas for the process trom point I to point 4?arrow_forwardIn performing 100.0 J of work, an engine discharges 50.0 J of heat. What is the efficiency of the engine?arrow_forward
- An infrared heater for a sauna has a surface area of 0.050 m2 and an emissivity of 0.84. What temperature must it run at if the required power is 360 W? Neglect the temperature of the environment.arrow_forwardIf the refrigerator door is left what happens to the temperature of the kitchen?arrow_forwardIn a diesel engine, the fuel is ignited without a spark plug. Instead, air in a cylinder is compressed adiabatically to a temperature above the ignition temperature of the fuel; at the point of maximum compression, the fuel is injected into the cylinder. Suppose that air at 20 C is taken into the cylinder at a volume V1 and then compressed adiabatically and quasi-statically to a temperature of 600 C and a volume V2 . If =1.4 , what is the ratio V1/V2 ? (Note: static. In an operating diesel engine, the compression is not quasi-arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
The Second Law of Thermodynamics: Heat Flow, Entropy, and Microstates; Author: Professor Dave Explains;https://www.youtube.com/watch?v=MrwW4w2nAMc;License: Standard YouTube License, CC-BY