EBK ORGANIC CHEMISTRY
8th Edition
ISBN: 8220102744127
Author: Bruice
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 20, Problem 46P
Interpretation Introduction
Interpretation:
The hexose obtained after three successive Killiani-Fisher synthesis of (+)-glyceraldehyde is to be predicted on the basis of given information.
Concept Introduction:
In Killiani-Fisher synthesis, hydrogen cyanide attacks the carbonyl group. The carbonyl carbon is converted to an asymmetric center. The
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A hexose was obtained after (+)-glyceraldehyde underwent three successive Kiliani–Fischer syntheses. Identify the hexose from the following experimental information: oxidation with nitric acid forms an optically active aldaric acid; a Wohl degradation followed by oxidation with nitric acid forms an optically inactive aldaric acid; and a second Wohl degradation forms erythrose.
Aldohexoses A and B are formed from aldopentose C via a Kiliani–Fischer synthesis. Nitric acid oxidizes A to an optically active aldaric acid, B to an optically inactive aldaric acid, and C to an optically active aldaric acid. Wohl degradation of C forms D, which is oxidized by nitric acid to an optically active aldaric acid. Wohl degradation of D forms (+)-glyceraldehyde. Identify A, B, C, and D.
A D-aldopentose A is oxidized to an optically inactive aldaric acid with HNO3. A is formed by the Kiliani–Fischer synthesis of a D-aldotetrose B, which is also oxidized to an optically inactive aldaric acid with HNO3. What are the structures of A and B?
Chapter 20 Solutions
EBK ORGANIC CHEMISTRY
Ch. 20.1 - Prob. 1PCh. 20.2 - Prob. 2PCh. 20.2 - Prob. 3PCh. 20.3 - Prob. 4PCh. 20.3 - Prob. 5PCh. 20.3 - Prob. 6PCh. 20.4 - Prob. 7PCh. 20.4 - Prob. 8PCh. 20.5 - Prob. 9PCh. 20.5 - Prob. 10P
Ch. 20.5 - Prob. 11PCh. 20.6 - Prob. 12PCh. 20.6 - Prob. 13PCh. 20.6 - Prob. 14PCh. 20.7 - Prob. 15PCh. 20.8 - Prob. 16PCh. 20.9 - Prob. 18PCh. 20.10 - Prob. 20PCh. 20.10 - Prob. 21PCh. 20.10 - Prob. 22PCh. 20.11 - Prob. 23PCh. 20.11 - Prob. 24PCh. 20.12 - Prob. 25PCh. 20.12 - Prob. 26PCh. 20.14 - Prob. 28PCh. 20.15 - Prob. 29PCh. 20.15 - Prob. 30PCh. 20.16 - Prob. 31PCh. 20.17 - Prob. 32PCh. 20.18 - Refer to Figure 20.5 to answer the following...Ch. 20 - Prob. 34PCh. 20 - Prob. 35PCh. 20 - Prob. 36PCh. 20 - Prob. 37PCh. 20 - Prob. 38PCh. 20 - Prob. 39PCh. 20 - Prob. 40PCh. 20 - Prob. 41PCh. 20 - Prob. 42PCh. 20 - Prob. 43PCh. 20 - Prob. 44PCh. 20 - Prob. 45PCh. 20 - Prob. 46PCh. 20 - Prob. 47PCh. 20 - Prob. 48PCh. 20 - The 1H NMR spectrum of D-glucose in D2O exhibits...Ch. 20 - Prob. 50PCh. 20 - Prob. 51PCh. 20 - Prob. 52PCh. 20 - Prob. 53PCh. 20 - Prob. 54PCh. 20 - Prob. 55PCh. 20 - Prob. 56PCh. 20 - Prob. 57PCh. 20 - Prob. 58PCh. 20 - Prob. 59PCh. 20 - Prob. 60PCh. 20 - Prob. 61PCh. 20 - A hexose is obtained when the residue of a shrub...Ch. 20 - Prob. 63PCh. 20 - Prob. 64PCh. 20 - Prob. 65PCh. 20 - Prob. 66PCh. 20 - Prob. 67PCh. 20 - Prob. 68PCh. 20 - Prob. 69PCh. 20 - Prob. 70PCh. 20 - Prob. 71PCh. 20 - Prob. 72PCh. 20 - Prob. 73P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Which D-aldopentose is oxidized to an optically active aldaric acid and undergoes the Wohl degradation to yield a D-aldotetrose that is oxidized to an optically active aldaric acid?arrow_forwardIdentify compounds A–D. A D-aldopentose A is oxidized with HNO3 to an optically inactive aldaric acid B. A undergoes the Kiliani–Fischer synthesis to yield C and D. C is oxidized to an optically active aldaric acid. D is oxidized to an optically inactive aldaric acidarrow_forward(a) Which of the d-aldopentoses will give optically active aldaric acids on oxidation with HNO3 ?(b) Which of the d-aldotetroses will give optically active aldaric acids on oxidation with HNO3 ?(c) Sugar X is known to be a d-aldohexose. On oxidation with HNO3, X gives an optically inactive aldaric acid. WhenX is degraded to an aldopentose, oxidation of the aldopentose gives an optically active aldaric acid. Determine thestructure of X.(d) Even though sugar X gives an optically inactive aldaric acid, the pentose formed by degradation gives an opticallyactive aldaric acid. Does this finding contradict the principle that optically inactive reagents cannot form opticallyactive products?(e) Show what product results if the aldopentose formed from degradation of X is further degraded to an aldotetrose.Does HNO3 oxidize this aldotetrose to an optically active aldaric acid?arrow_forward
- Aldohexoses A and B both undergo Ruff degradation to give aldopentose C. On treatment with warm nitric acid, aldopentose C gives an optically active aldaric acid. B alsoreacts with warm nitric acid to give an optically active aldaric acid, but A reacts to givean optically inactive aldaric acid. Aldopentose C is degraded to aldotetrose D, whichgives optically active tartaric acid when it is treated with nitric acid. Aldotetrose D isdegraded to (+)@glyceraldehyde. Deduce the structures of sugars A, B, C, and D, and useFigure 23-3 to determine the correct names of these sugars.arrow_forwardA hexose is obtained when the residue of a shrub Sterculia setigeria undergoes acid-catalyzed hydrolysis. Identify the hexose from the following experimental information: it undergoes mutarotation; it does not react with Br2; and D-galactonic acid and D-talonic acid are formed when it reacts with Tollens’ reagent.arrow_forwardTreatment with NaBH 4 converts aldose U into an optically inactive (meso) alditol V. Ruff degradation ofU gives W, whose alditol is optically inactive. Ruff degradation of W forms D-glyceraldehyde, thesimplest aldose. Upon Kiliani-Fischer synthesis, U is converted to two aldoses, X and Y. X is oxidized toan optically active aldaric acid Z. Y is oxidized to an optically inactive aldaric acid. Draw the structuresof D-glyceraldehyde, V, W, X, Y, and Z. Structure of compound U is shown below.arrow_forward
- An optically active D-aldopentose (A) produced an optically inactive alditol (B) upon treatment with H2/Pt. When the aldopentose (A) was subjected to a Ruff degradation, D-aldotetrose (C) was generated. The aldotetrose (C) gave an optically active aldaric acid (D) upon oxidation with HNO3. D-aldopentose (A) can be prepared from D-threose by a Killani Fischer synthesis. Propose structure of A through D.arrow_forwardWhich of the d-aldopentoses will give optically active aldaric acids on oxidation with HNO3 ?(arrow_forwardWhen an optically active D-aldopentose was subjected to Kiliani-Fischer synthesis, followed by NaBH4/H2O, it produced a mixture of an optically active and an optically inactive alditol. When the same D-aldopentose was subjected to Wohl degradation followed by HNO3 it produced an optically inactive aldaric acid. Provide the structure of this D-aldopentose. Н- НО- н- H -ОН НО -H Н- -Н CH₂OH 1 A) 1 B) II C) III осн H D) IV НО осн -H Н- -OH H- H HỌ CH₂OH П -OH H -OH H Н -H CH₂OH Ш _H -OH HO -OH H- -OH H- осн -H -OH CH₂OH IV -OH CH₂OH Varrow_forward
- D-glucose exists as two epimeric cyclic hemiacetals: a-D-glucopyranose (left, labeled hydroxy group is in the axial position) and B-D-glucopyranose (right, the labeled hydroxy group is in equatorial position). The two anomers equilibrate via the open aldehyde form. Draw the curved arrows to show the complete reaction mechanism for the conversion of one anomer to the other under acidic catalysis. HOH HOH Ho HO HO HO HO- H H HO- OH!-- H H OH H OHI Harrow_forwardWhen the gum of the shrub Sterculia setigera is subjected to acidic hydrolysis, one of the water-soluble components of thehydrolysate is found to be tagatose. The following information is known about tagatose:(1) Molecular formula C6H12O6(2) Undergoes mutarotation.(3) Does not react with bromine water.(4) Reduces Tollens reagent to give d-galactonic acid and d-talonic acid.(5) Methylation of tagatose (using excess CH3 I and Ag2O) followed by acidic hydrolysis gives1,3,4,5-tetra-O-methyltagatose.(a) Draw a Fischer projection structure for the open-chain form of tagatose.(b) Draw the most stable conformation of the most stable cyclic hemiacetal form of tagatosearrow_forwardAn oligosaccharide isolated from an organism is found tocontain two glucose residues and one galactose residue.Exhaustive methylation followed by hydrolysis producedtwo glucoses with methoxy groups at positions 2, 3,and 6 and galactose with methoxy groups at positions2, 3, 4, and 6. What is the structure of the originaloligosaccharide?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Organic ChemistryChemistryISBN:9781305580350Author:William H. Brown, Brent L. Iverson, Eric Anslyn, Christopher S. FootePublisher:Cengage LearningChemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage Learning
- Macroscale and Microscale Organic ExperimentsChemistryISBN:9781305577190Author:Kenneth L. Williamson, Katherine M. MastersPublisher:Brooks ColeEBK A SMALL SCALE APPROACH TO ORGANIC LChemistryISBN:9781305446021Author:LampmanPublisher:CENGAGE LEARNING - CONSIGNMENT
Organic Chemistry
Chemistry
ISBN:9781305580350
Author:William H. Brown, Brent L. Iverson, Eric Anslyn, Christopher S. Foote
Publisher:Cengage Learning
Chemistry for Today: General, Organic, and Bioche...
Chemistry
ISBN:9781305960060
Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. Hansen
Publisher:Cengage Learning
Macroscale and Microscale Organic Experiments
Chemistry
ISBN:9781305577190
Author:Kenneth L. Williamson, Katherine M. Masters
Publisher:Brooks Cole
EBK A SMALL SCALE APPROACH TO ORGANIC L
Chemistry
ISBN:9781305446021
Author:Lampman
Publisher:CENGAGE LEARNING - CONSIGNMENT