College Physics (10th Edition)
10th Edition
ISBN: 9780321902788
Author: Hugh D. Young, Philip W. Adams, Raymond Joseph Chastain
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 20, Problem 21P
An electron travels into a 0.3 magnetic field perpendicular to its path, where it moves in a circular arc of diameter 0.020 m. What is the kinetic energy of the electron?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 20 Solutions
College Physics (10th Edition)
Ch. 20 - If an electron beam in a cathode-ray tube travels...Ch. 20 - Why is it not a good idea to call magnetic field...Ch. 20 - If the magnetic force does no work on a charged...Ch. 20 - A permanent magnet can be used to pick up a string...Ch. 20 - Streams of charged particles emitted from the sun...Ch. 20 - A student once proposed to obtain an isolated...Ch. 20 - The magnetic force on a moving charged particle is...Ch. 20 - The text discusses the magnetic field of an...Ch. 20 - Two parallel conductors carrying current in the...Ch. 20 - Household wires (such as lamp cords) often carry...
Ch. 20 - Can a charged particle move through a magnetic...Ch. 20 - Prob. 12CQCh. 20 - An electron traveling with a speed v enters a...Ch. 20 - A beam of protons is directed horizontally into...Ch. 20 - A wire carrying a current in the direction shown...Ch. 20 - A solenoid is connected to a battery as shown in...Ch. 20 - Two very long, straight, parallel wires carry...Ch. 20 - A light circular wire suspended by a thin silk...Ch. 20 - An electron is moving di'ectly toward you in a...Ch. 20 - Three particles having the same mass and the same...Ch. 20 - A metal bar connected by metal leads to the...Ch. 20 - A certain current produces a magnetic field 8 near...Ch. 20 - A coil is connected to a battery as shown in...Ch. 20 - A particle enters a uniform magnetic field...Ch. 20 - In a 1.25 T magnetic field directed vertically...Ch. 20 - An ion having charge +6e is traveling horizontally...Ch. 20 - A proton traveling at 3 60 km/s suddenly enters a...Ch. 20 - A particle having a mass of 0.195 g carries a...Ch. 20 - At a given instant, a particle with a mass of 5.00...Ch. 20 - If the magnitude of the magnetic force on a proton...Ch. 20 - A particle with mass 3 102 kg and charge +5 C...Ch. 20 - A particle with a charge of 2.50 108 C is moving...Ch. 20 - A particle with mass 1.81 103 kg and a charge of...Ch. 20 - Prob. 10PCh. 20 - Prob. 11PCh. 20 - An electron moves at 2.50 106 m/s through a...Ch. 20 - In a cloud chamber- experiment, 3 proton enters a...Ch. 20 - An alpha particle (a He nucleus, containing two...Ch. 20 - A deuteron particle (the nucleus of an isotope of...Ch. 20 - A beam of protons traveling at 1.20 km/s enters a...Ch. 20 - A uniform magnetic field bends an electron in a...Ch. 20 - 18. An electron at point A in Figure 20.59 has a...Ch. 20 - Prob. 19PCh. 20 - A 3.25 g bullet picks up an electric charge of...Ch. 20 - An electron travels into a 0.3 magnetic field...Ch. 20 - Prob. 22PCh. 20 - Singly ionized (one electron removed) atoms are...Ch. 20 - Ancient meat eating. The amount of meat in...Ch. 20 - A straight vertical wire carries a current of 1.20...Ch. 20 - Magnetic force on a lightning bolt. Currents...Ch. 20 - A horizontal rod 0.200 m long carries a current...Ch. 20 - A straight 2.5 m wire carries a typical household...Ch. 20 - A magnetic field is used to suspend a wire of mass...Ch. 20 - A rectangular 10.0 cm by 20.0 cm circuit carrying...Ch. 20 - A long wire carrying a 6.00 A current reverses...Ch. 20 - As long wire carrying 4.50 A or current makes two...Ch. 20 - The 20.0 cm by 35.0 cm rectangular circuit shown...Ch. 20 - Prob. 34PCh. 20 - A circular coil of wire 8.6 cm in diameter has 15...Ch. 20 - A coil having 165 turns and a radius of 1.2 cm...Ch. 20 - A circular coil of 50 loops and diameter 20.0 cm...Ch. 20 - You want to produce a magnetic field of magnitude...Ch. 20 - Household magnetic fields. Home circuit breakers...Ch. 20 - (a) How large a current would a very long,...Ch. 20 - Currents in the heart. The body contains many...Ch. 20 - Magnetic sensitivity of electric fish. Electric...Ch. 20 - A jumper cable is used to start a car that has a...Ch. 20 - If the magnetic field due to a long, straight,...Ch. 20 - A long, straight wire carries a current l0 and...Ch. 20 - EMF. Currents in dc transmission lines can be 100...Ch. 20 - A long, straight telephone cable contains six...Ch. 20 - Two insulated wires perpendicular to each other in...Ch. 20 - Two long straight parallel wires are 10.0 cm apart...Ch. 20 - Set Up: B=0l2r The direction of BB is given by the...Ch. 20 - Two high-current transmission lines carry currents...Ch. 20 - Prob. 52PCh. 20 - Prob. 53PCh. 20 - An electric bus operates by drawing current from...Ch. 20 - A circular metal loop is 22 cm in diameter, (a)...Ch. 20 - A closely wound circular coil with a diameter of...Ch. 20 - A closely wound circular coil has a radius of 6.00...Ch. 20 - BIO Currents in the brain. The magnetic field...Ch. 20 - A closely wound, circular coil with radius 2.40 cm...Ch. 20 - Two circular concentric loops of wire lie on a...Ch. 20 - Calculate the magnitude and direction of the...Ch. 20 - A solenoid contains 750 coils of very thin wire...Ch. 20 - As a new electrical technician, you are designing...Ch. 20 - A solenoid is designed to produce a 0.0279 T...Ch. 20 - As shown in Figure 20.67, a single circular...Ch. 20 - A solenoid that is 35 cm long and contains 450...Ch. 20 - You have 25 m of wire, which you want to use to...Ch. 20 - A toroidal solenoid (see Figure 20.42) has inner...Ch. 20 - Three long, straight electrical cables, running...Ch. 20 - A long, straight, cylindrical wire of radius R...Ch. 20 - Platinum is a paramagnetic metal having a relative...Ch. 20 - When a certain paramagnetic material is placed in...Ch. 20 - A 150 g ball containing 4.00 108 excess electrons...Ch. 20 - Magnetic balance. The circuit shown in Figure...Ch. 20 - A thin 50.0-cm-long metal bar with mass 750 g...Ch. 20 - 76. A long, straight wire containing a...Ch. 20 - A singly charged an of Li (on isotope of lithium...Ch. 20 - An insulated circular ring of diameter 6.50 cm...Ch. 20 - The effect of transmission lines. Two hikers are...Ch. 20 - DATA A current-carrying wife of length 0.15 m is...Ch. 20 - Two very long, straight wires carry currents as...Ch. 20 - Prob. 82GPCh. 20 - Prob. 83GPCh. 20 - Prob. 84GPCh. 20 - A long wire carrying 6.50 A of current makes two...Ch. 20 - BIO Magnetic fields and MRI. Magnetic resonance...Ch. 20 - Prob. 87PPCh. 20 - The large magnetic fields used in MRI can produce...Ch. 20 - BIO Studying magnetic bacteria. Some types of...Ch. 20 - To use a larger sample of bacteria, the...Ch. 20 - BIO Studying magnetic bacteria. Some types of...
Additional Science Textbook Solutions
Find more solutions based on key concepts
The smallest ramp angle at which the block will slide back down after reaching its highest point.
College Physics: A Strategic Approach (3rd Edition)
Show that identical objects placed equal distances on either side of the focal point of a concave mirror or con...
Essential University Physics (3rd Edition)
Explain all answers clearly, with complete sentences and proper essay structure if needed. An asterisk (*) desi...
Cosmic Perspective Fundamentals
A student in a physics lab mistakenly wired a light bulb, battery, and switch as shown in Figure 21.44. Explain...
College Physics
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A proton moving in the plane of the page has a kinetic energy of 6.00 MeV. A magnetic field of magnitude H = 1.00 T is directed into the page. The proton enters the magnetic field with its velocity vector at an angle = 45.0 to the linear boundary of' the field as shown in Figure P29.80. (a) Find x, the distance from the point of entry to where the proton will leave the field. (b) Determine . the angle between the boundary and the protons velocity vector as it leaves the field.arrow_forwardWhat magnetic field is required in order to confine a proton moving with a speed of 4.0 × 106 m/s to a circular orbit of radius 10 cm?arrow_forwardA particle moving downward at a speed of 6.0106 m/s enters a uniform magnetic field that is horizontal and directed from east to west. (a) If the particle is deflected initially to the north in a circular arc, is its charge positive or negative? (b) If B = 0.25 T and the charge-to-mass ratio (q/m) of the particle is 40107 C/kg. what is ±e radius at the path? (c) What is the speed of the particle after c has moved in the field for 1.0105s ? for 2.0s?arrow_forward
- The picture tube in an old black-and-white television uses magnetic deflection coils rather than electric deflection plates. Suppose an electron beam is accelerated through a 50.0-kV potential difference and then through a region of uniform magnetic field 1.00 cm wide. The screen is located 10.0 cm from the center of the coils and is 50.0 cm wide. When the field is turned off, the electron beam hits the center of the screen. Ignoring relativistic corrections, what field magnitude is necessary to deflect the beam to the side of the screen?arrow_forwardWhy is the following situation impossible? Figure P28.46 shows an experimental technique for altering the direction of travel for a charged particle. A particle of charge q = 1.00 C and mass m = 2.00 1015 kg enters the bottom of the region of uniform magnetic field at speed = 2.00 105 m/s, with a velocity vector perpendicular to the field lines. The magnetic force on the particle causes its direction of travel to change so that it leaves the region of the magnetic field at the top traveling at an angle from its original direction. The magnetic field has magnitude B = 0.400 T and is directed out of the page. The length h of the magnetic field region is 0.110 m. An experimenter performs the technique and measures the angle at which the particles exit the top of the field. She finds that the angles of deviation are exactly as predicted. Figure P28.46arrow_forwardElectrons in Earths upper atmosphere have typical speeds near 6.00 105 m/s. (a) Calculate the magnitude of Earths magnetic field if an electrons velocity is perpendicular to the magnetic field and its circular path has a radius of 7.00 102 m. (b) Calculate the number of times per second that an electron circles around a magnetic field line.arrow_forward
- An electron in a TV CRT moves with a speed of 6.0107 m/s, in a direction perpendicular to Earth's field, which has a strength of 5.0105 T. (a) What strength electric field must be applied perpendicular to the Earth’s field to make the election moves in a straight line? (b) If this is done between plates separated by 1.00 cm, what is the voltage applied? (Note that TVs are usually surrounded by a ferromagnetic material to shield against external magnetic fields and avoid the need for such a collection,)arrow_forwardAn alpha-particle ( m=6.641027kg , q=3.21019C ) travels in a circular path of radius 25 cm in a uniform magnetic field of magnitude 1.5 T. (a) What is the speed of the particle? (b) What is the kinetic energy in electron-volts? (c) Through what potential difference must the particle be accelerated in order to give it this kinetic energy?arrow_forwardA cosmic-ray electron moves at 7.5 × 106 m/sinches perpendicular to Earth’s magnetic field at an altitude queer the field strength is 1.0 × 105T. What is the radius of the circular path the electron follows?arrow_forward
- Review. An electron moves in a circular path perpendicular to a constant magnetic field of magnitude 1.00 mT. The angular momentum of the electron about the center of the circle is 4.00 × 10−25 kg · m2/s. Determine (a) the radius of the circular path and (b) the speed of the electron.arrow_forwardA spacecraft is in 4 circular orbit of radius equal to 3.0 104 km around a 2.0 1030 kg pulsar. The magnetic field of the pulsar at that radial distance is 1.0 102 T directed perpendicular to the velocity of the spacecraft. The spacecraft is 0.20 km long with a radius of 0.040 km and moves counter-clockwise in the xy-plane around the pulsar. (a) What is the speed of the spacecraft? (b) If the magnetic field points in the positive z-direction, is the emf induced from the back to the front of the spacecraft or from side to side? (c) Compute the induced emf. (d) Describe the hazards for astronauts inside any spacecraft moving in the vicinity of a pulsar.arrow_forwardIs the work required to accelerate a rod from rest to a speed v in a magnetic field greater than the final kinetic energy of the rod? Why?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Magnets and Magnetic Fields; Author: Professor Dave explains;https://www.youtube.com/watch?v=IgtIdttfGVw;License: Standard YouTube License, CC-BY