BIO Studying magnetic bacteria. Some types of bacteria contain chains of ferromagnetic particles parallel to their long axis. The chains act like small bar magnets that align these magnetotactic bacteria with the earth’s magnetic field. In one experiment to study the response of such bacteria to magnetic fields, a solenoid is constructed with copper wire, 1.0 mm in diameter, evenly wound in a single layer to form a helical coil of length 40 cm and diameter 12 cm. The wire has a very thin layer of insulation, and the coil is wound so that adjacent turns are just touching. The solenoid, which generates a magnetic field, is in an enclosure that shields it from other magnetic fields. A sample of magnetotactic bacteria is placed inside the solenoid. The torque on an individual bacterium in the solenoid’s magnetic field is proportional to the magnitude of the magnetic field and to the sine of the angle between the long axis of the bacterium and the magnetic-field direction. 91. The solenoid is removed from the enclosure and then used in a location where the earth's magnetic field is 50 μ T and points horizontally. A sample of bacteria is placed in the center of the solenoid, and the same current is applied that produced a magnetic field of 150 μ T in the lab. Describe the field experienced by the bacteria. The field A. is still 150 μ T. B. is now 200 μ T. C. is between 100 and 200 μ T, depending on how the solenoid is oriented. D. is between 50 and 150 μ T, depending on how the solenoid is oriented.
BIO Studying magnetic bacteria. Some types of bacteria contain chains of ferromagnetic particles parallel to their long axis. The chains act like small bar magnets that align these magnetotactic bacteria with the earth’s magnetic field. In one experiment to study the response of such bacteria to magnetic fields, a solenoid is constructed with copper wire, 1.0 mm in diameter, evenly wound in a single layer to form a helical coil of length 40 cm and diameter 12 cm. The wire has a very thin layer of insulation, and the coil is wound so that adjacent turns are just touching. The solenoid, which generates a magnetic field, is in an enclosure that shields it from other magnetic fields. A sample of magnetotactic bacteria is placed inside the solenoid. The torque on an individual bacterium in the solenoid’s magnetic field is proportional to the magnitude of the magnetic field and to the sine of the angle between the long axis of the bacterium and the magnetic-field direction. 91. The solenoid is removed from the enclosure and then used in a location where the earth's magnetic field is 50 μ T and points horizontally. A sample of bacteria is placed in the center of the solenoid, and the same current is applied that produced a magnetic field of 150 μ T in the lab. Describe the field experienced by the bacteria. The field A. is still 150 μ T. B. is now 200 μ T. C. is between 100 and 200 μ T, depending on how the solenoid is oriented. D. is between 50 and 150 μ T, depending on how the solenoid is oriented.
BIO Studying magnetic bacteria. Some types of bacteria contain chains of ferromagnetic particles parallel to their long axis. The chains act like small bar magnets that align these magnetotactic bacteria with the earth’s magnetic field. In one experiment to study the response of such bacteria to magnetic fields, a solenoid is constructed with copper wire, 1.0 mm in diameter, evenly wound in a single layer to form a helical coil of length 40 cm and diameter 12 cm. The wire has a very thin layer of insulation, and the coil is wound so that adjacent turns are just touching. The solenoid, which generates a magnetic field, is in an enclosure that shields it from other magnetic fields. A sample of magnetotactic bacteria is placed inside the solenoid. The torque on an individual bacterium in the solenoid’s magnetic field is proportional to the magnitude of the magnetic field and to the sine of the angle between the long axis of the bacterium and the magnetic-field direction.
91. The solenoid is removed from the enclosure and then used in a location where the earth's magnetic field is 50 μT and points horizontally. A sample of bacteria is placed in the center of the solenoid, and the same current is applied that produced a magnetic field of 150 μT in the lab. Describe the field experienced by the bacteria. The field
A. is still 150 μT.
B. is now 200 μT.
C. is between 100 and 200 μT, depending on how the solenoid is oriented.
D. is between 50 and 150 μT, depending on how the solenoid is oriented.
A circular coil with 100 turns and a radius of 0.05 m is placed in a magnetic field that changes at auniform rate from 0.2 T to 0.8 T in 0.1 seconds. The plane of the coil is perpendicular to the field.• Calculate the induced electric field in the coil.• Calculate the current density in the coil given its conductivity σ.
An L-C circuit has an inductance of 0.410 H and a capacitance of 0.250 nF . During the current oscillations, the maximum current in the inductor is 1.80 A . What is the maximum energy Emax stored in the capacitor at any time during the current oscillations? How many times per second does the capacitor contain the amount of energy found in part A? Please show all steps.
A long, straight wire carries a current of 10 A along what we’ll define to the be x-axis. A square loopin the x-y plane with side length 0.1 m is placed near the wire such that its closest side is parallel tothe wire and 0.05 m away.• Calculate the magnetic flux through the loop using Ampere’s law.
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.