College Physics
1st Edition
ISBN: 9781938168000
Author: Paul Peter Urone, Roger Hinrichs
Publisher: OpenStax College
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 21, Problem 5CQ
A student in a physics lab mistakenly wired a light bulb, battery, and switch as shown in Figure 21.44. Explain why the bulb is on when the switch is open, and off when the switch is closed. (Do not try this-it is hard on the battery!)
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
True or false: in a typical Canadian household, all of the appliances, such as dishwashers and washing machines, and all of the lighting fixtures, such as ceiling lights, are connected to a power socket.
Question 10 options:
False
True
This homework problem is giving me some issues, help would be greatly appreciated! Thanks!
You have been given the circuit in the image. . The switch was closed a long time ago and the capacitor was also fully charged. After the switch is opened the potential difference across the capacitor decreases to 25 percent of its initial value after:
A) 0.46s
B) 1.7s
C) 2.2 s
D) 2.8s
E) 3.3s
Chapter 21 Solutions
College Physics
Ch. 21 - A switch has a variable resistance that is nearly...Ch. 21 - What is the voltage across the open switch in...Ch. 21 - There is a voltage across an open switch, such as...Ch. 21 - Why is the power dissipated by a closed switch,...Ch. 21 - A student in a physics lab mistakenly wired a...Ch. 21 - Knowing that the severity of a shock depends on...Ch. 21 - Would your headlights dim when you start your...Ch. 21 - Some strings of holiday lights are wired in series...Ch. 21 - If two household lightbulbs rated 60 W and 100 W...Ch. 21 - Suppose you are doing a physics lab that asks you...
Ch. 21 - Before World War II, some radios got power through...Ch. 21 - Some light bulbs have three power settings (not...Ch. 21 - Is every emf a potential difference? Is every...Ch. 21 - Explain which battery is doing the charging and...Ch. 21 - Given a battery, an assortment of resistors, and a...Ch. 21 - Two different 12-V automobile batteries on a store...Ch. 21 - What are the advantages and disadvantages of...Ch. 21 - Semitractor trucks use four large 12-V batteries....Ch. 21 - Call all of the currents going into the junction...Ch. 21 - Apply the junction rule to junction b in Figure...Ch. 21 - (a) What is the potential difference going from...Ch. 21 - Apply the loop rule to loop afedcba in Figure...Ch. 21 - Apply the loop rule to loops abgefa and cbgedc in...Ch. 21 - Why should you not connect an ammeter directly...Ch. 21 - Suppose you are using a multimeter (one designed...Ch. 21 - Specify the points to which you could connect a...Ch. 21 - To measure currents in Figure 21.49, you would...Ch. 21 - Why can a null measurement be more accurate than...Ch. 21 - If a potentiometer is used to measure cell emfs on...Ch. 21 - Regarding the units involved in the relationship t...Ch. 21 - The RC time constant in heart defibrillation is...Ch. 21 - When making an ECG measurement, it is important to...Ch. 21 - Draw two graphs of charge versus time on a...Ch. 21 - When charging a capacitor, as discussed in...Ch. 21 - When discharging a capacitor, as discussed in...Ch. 21 - Referring to Figure 21.38, draw a graph of...Ch. 21 - A long, inexpensive extension cord is connected...Ch. 21 - In Figure 21.41. does the graph indicate the time...Ch. 21 - An electronic apparatus may have large capacitors...Ch. 21 - (a) What is the resistance often 275-O resistors...Ch. 21 - (a) What is the resistance of a 1.00 102-O, a...Ch. 21 - What are the largest and smallest resistances you...Ch. 21 - An 1800-W toaster, a 1400-W electric frying pan,...Ch. 21 - Your car’s 30.0-W headlight and 2.40-kW starter...Ch. 21 - (a) Given a48.0-V battery and 24.0-O and 96.0-O...Ch. 21 - Referring to the example combining series and...Ch. 21 - Referring to Figure 21.6: (a) Calculate P3 and...Ch. 21 - Refer to Figure 21.7 and the discussion of lights...Ch. 21 - A 240-kV power transmission line carrying...Ch. 21 - Show that if two resistors R1and R2are combined...Ch. 21 - Unreasonable Results Two resistors, one having a...Ch. 21 - Unreasonable Results Two resistors, one having a...Ch. 21 - Standard automobile batteries have six lead-acid...Ch. 21 - Car bon-zinc dry cells (sometimes referred to as...Ch. 21 - What is the output voltage of a 3.0000-V lithium...Ch. 21 - (a) What is the terminal voltage of a large 1.54-V...Ch. 21 - What is the internal resistance of an automobile...Ch. 21 - (a) Find the terminal voltage of a 12.0-V...Ch. 21 - A car battery with a 12-V emf and an internal...Ch. 21 - The hot resistance of a flashlight bulb is 2.30 ,...Ch. 21 - The label or a portable radio recommends the use...Ch. 21 - An automobile starter motor has an equivalent...Ch. 21 - A child’s electronic toy is supplied by three...Ch. 21 - (a) What is the internal resistance of a voltage...Ch. 21 - A person with body resistance between his hands of...Ch. 21 - Electric fish generate current with biological...Ch. 21 - Integrated Concepts A 12.0-V emf automobile...Ch. 21 - Unreasonable Results A 1.58-V alkaline cell with a...Ch. 21 - Unreasonable Results (a) What is the internal...Ch. 21 - Apply the loop rule to loop abcdefgha in Figure...Ch. 21 - Apply the loop rule to loop aedcba in Figure...Ch. 21 - Verify the second equation in Example 21.5 by...Ch. 21 - Verify the third equation in Example 21.5 by...Ch. 21 - Apply the junction rule at point a in Figure...Ch. 21 - Apply the loop rule to loop abcdefghija in Figure...Ch. 21 - Apply the loop rule to loop akledcba in Figure...Ch. 21 - Find the currents flowing in the circuit in Figure...Ch. 21 - Solve Example 21.5, but use loop abcdefgha instead...Ch. 21 - Find the currents flowing in the circuit in Figure...Ch. 21 - Unreasonable Results Consider the circuit in...Ch. 21 - What is the sensitivity of the galvanometer (that...Ch. 21 - What is the sensitivity of the galvanometer (that...Ch. 21 - Find the resistance that must be placed in series...Ch. 21 - Find the resistance that must be placed in series...Ch. 21 - Find the resistance that must be placed in series...Ch. 21 - Find the resistance that must be placed in...Ch. 21 - Find the resistance that must be placed in series...Ch. 21 - Find the resistance that must be placed in...Ch. 21 - Suppose you measure the terminal voltage of a...Ch. 21 - Suppose you measure the terminal voltage of a...Ch. 21 - A certain ammeter has a resistance of 5.00X10-5 ...Ch. 21 - A 1,00-?O voltmeter is placed in parallel with a...Ch. 21 - A 0.0200- ammeter is placed in series with a...Ch. 21 - Unreasonable Results Suppose you have a 40.0-...Ch. 21 - Unreasonable Results (a) What resistance would you...Ch. 21 - What is the emf x of a cell being measured in a...Ch. 21 - Calculate the emfx of a dry cell for which a...Ch. 21 - When an unknown resistance Rxis placed in a...Ch. 21 - To what value must you adjust R3to balance a...Ch. 21 - (a) What is the unknown emfx in a potentiometer...Ch. 21 - Suppose you want to measure resistances in the...Ch. 21 - The timing device in an automobile’s intermittent...Ch. 21 - A heart pacemaker fires 72 times a minute, each...Ch. 21 - The duration of a photographic flash is related to...Ch. 21 - A 2.00- and a 7.50-F capacitor can be connected in...Ch. 21 - After two time constants, what percentage of the...Ch. 21 - A 500- resistor, an uncharged 1.50-F capacitor and...Ch. 21 - A heart defibrillator being used on a patient has...Ch. 21 - An ECG monitor must have an RC time constant less...Ch. 21 - Figure 21.55 shows how a bleeder resistor is used...Ch. 21 - Using the exact exponential treatment, find how...Ch. 21 - Using the exact exponential treatment, find how...Ch. 21 - Integrated Concepts If you wish to take a picture...Ch. 21 - Integrated Concepts A flashing lamp in a Christmas...Ch. 21 - Integrated Concepts A 160F capacitor charged to...Ch. 21 - Unreasonable Results (a) Calculate the capacitance...Ch. 21 - Construct Your Own Problem Consider a camera's...Ch. 21 - Construe! Your Own Problem Consider a rechargeable...
Additional Science Textbook Solutions
Find more solutions based on key concepts
In your own words, briefly distinguish between relative dates and numerical dates.
Applications and Investigations in Earth Science (9th Edition)
1. An object is subject to two forces that do not point in opposite directions. Is it possible to choose their ...
College Physics: A Strategic Approach (3rd Edition)
Raw Oysters and Antacids: A Deadly Mix? The highly acidic environment of the stomach kills most bacteria before...
Microbiology with Diseases by Body System (5th Edition)
Body, Heal Thyself The precision of mitotic cell division is essential for repairing damaged tissues like those...
Biology: Life on Earth with Physiology (11th Edition)
[14.110] The following mechanism has been proposed for the gas-phase reaction of chloroform (CHCI3) and chlorin...
Chemistry: The Central Science (14th Edition)
7. Which bones form via intramembranous ossification?
a. Irregular bones
b. Certain flat bones
c. Long bones
d....
Human Anatomy & Physiology (2nd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Referring to Figure CQ21.4, describe what happens to the light-bulb after the switch is closed. Assume the capacitor has a large capacitance and is initially uncharged. Also assume the light illuminates when connected directly across the battery terminals.arrow_forwardFigure P18.37 shows a simplified model of a cardiac defibrillator, a device used to patients in ventricular fibrillation. When the switch S is toggled to the left, the capacitor C charges through the resistor R .When the switch is toggled to the right, the capacitor discharges current through the patients torso, modeled as the resistor Rtorso, allowing the hearts normal rhythm to be reestablished. (a) If the capacitor is initially uncharged with C = 8.00 F and = 1250 V, find the value of R required to charge the capacitor to a voltage of 775 V in 1.50 s. (b) If the capacitor is then discharged across the patients torso with, Rtorso = 1250 , calculate the voltage across the capacitor after 5.00 ms. Figure P18.37arrow_forwardThe immediate cause of many deaths is ventricular fibrillation, an uncoordinated quivering of the heart, as opposed to proper beating. An electric shock to the chest can cause momentary paralysis of the heart muscle, after which the heart will sometimes start organized beating again. A defibrillator is a device that applies a strong electric shock to the chest over a time of a few milliseconds. The device contains a capacitor of a few microfarads, charged to several thousand volts. Electrodes called paddles, about 8 cm across and coated with conducting paste, are held against the chest on both sides of the heart. Their handles are insulated to prevent injury to the operator, who calls Clear! and pushes a button on one paddle to discharge the capacitor through the patient's chest Assume an energy of 3.00 102 W s is to be delivered from a 30.0-F capacitor. To what potential difference must it be charged?arrow_forward
- In a hydroelectric installation, a turbine delivers 1500 hp to a generator, which in turn transfers 80.0% of the mechanical energy out by electrical transmission. Under these conditions, what current does the generator deliver at a terminal potential difference of 2000 V?arrow_forwardAn electric eel generates electric currents through its highly specialized Hunters organ, in which thousands of disk-shaped cells called electrocytes are lined up in series, very much in the same way batteries are lined up inside a flashlight. When activated, each electrocyte can maintain a potential difference of about 150 mV at a current of 1.0 A for about 2.0 ms. Suppose a grown electric eel has 4.0 103 electrocytes and can deliver up to 3.00 102 shocks in rapid series over about 1.0 s. (a) What maximum electrical power can an electric eel generate? (b) Approximately how much energy does it release in one shock? (c) How high would a mass of 1.0 kg have to be lifted so that its gravitational potential energy equals the energy released in 3.00 102 such shocks?arrow_forwardThe switch is closed in Figure 18.20. After a long time compared with the time constant, of the circuit, what will the current be in the 2- resistor? (a) 4 A (b) 3 A (c) 2 A (d) 1 A (c) More information is needed. Figure 18.20 (Quick Quiz 18.9)arrow_forward
- When the switch is open in Figure 18.8, power Po is delivered to the resistor R1. When the switch is closed, which of the following is true about the power Pc delivered to R1? (Neglect the internal resistance of the battery.) (a) Pc Po (b) Pc = Po (c) Pc Po Figure 18.8 (Quick Quizzes 18.5 and 18.6)arrow_forwardIf you wish to take a picture of a bullet traveling at 500 m/s, then a very brief flash of light produced by an EC discharge through a flash tube can limit blurring. Assuming 1.00 mm of motion during one EC constant is acceptable, and given that the flash is driven by a 600F capacitor, what is the resistance in the flash tube?arrow_forwardWhile taking a bath, a person touches the metal case of a radio. The path through the person to the drainpipe and ground has a resistance of 4000- . What is the smallest voltage on the case of the radio that could cause ventricular fibrillation?arrow_forward
- Why is it possible for a bird to sit on a high-voltage wire without being electrocuted?arrow_forwardAccording to its design specification, the timer circuit delaying the closing of an elevator door is to have a capacitance of 32.0 F between two points A and B. When one circuit is being constructed, the inexpensive but durable capacitor installed between these two points is found to have capacitance 34.8 F. To meet the specification, one additional capacitor can be placed between the two points. (a) Should it be in series or in parallel with the 34.8-F capacitor? (b) What should be its capacitance? (c) What If? The next circuit comes down the assembly line with capacitance 29.8 F between A and B. To meet the specification, what additional capacitor should be installed in series or in parallel in that circuit?arrow_forwardThe figure (Figure 1) shows a simplified circuit for a photographic flash unit. This circuit consists of a 9.0-V battery, a 50.0 kΩ resistor, a 140−μF capacitor, a flashbulb, and two switches. Initially, the capacitor is uncharged and the two switches are open. To charge the unit, switch S1 is closed; to fire the flash, switch S2 (which is connected to the camera's shutter) is closed. How long does it take to charge the capacitor to 5.0 V?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Domestic Electric Circuits; Author: PrepOnGo Class 10 & 12;https://www.youtube.com/watch?v=2ZvWaloQ3nk;License: Standard YouTube License, CC-BY