Derive an expression for the half-life of (a) a third order reaction;(b) a reaction whose order is

(a)
Interpretation:
The expression for half-life of third order reaction is to be stated.
Concept introduction:
The time required for the concentration of the reactant to reduce to half of its initial concentration gives the half-life of the reaction. The half-life of the reaction depends on the initial concentration of the reactant except for the first order reaction.
Answer to Problem 20.27E
The expression for half-life of third order reaction is
Explanation of Solution
The integrated rate law for the third-order kinetics is,
Where,
•
At half-life, that is, at time
Substitute
Thus, the half-life for third order kinetics is
The expression for half-life of third order reaction is

(b)
Interpretation:
The expression for half-life of a reaction whose order is
Concept introduction:
The time required for the concentration of the reactant to reduce to half of its initial concentration gives the half-life of the reaction. The half-life of the reaction depends on the initial concentration of the reactant except for the first order reaction.
Answer to Problem 20.27E
The expression for half-life for a reaction whose order is
Explanation of Solution
The rate law for a reaction whose order is
This law is rearranged as,
Where,
•
•
Integrate the given equation from
The constants are kept out of the integral and the equation is integrated.
Apply the limits in the above equation as shown below.
Thus, equation (1) represents the integrated rate law.
At half-life, that is, at time
Substitute
Thus, the half-life for a reaction whose order is
The expression for half-life for a reaction whose order is

(c)
Interpretation:
The expression for half-life of a reaction whose order is
Concept introduction:
The time required for the concentration of the reactant to reduce to half of its initial concentration gives the half-life of the reaction. The half-life of the reaction depends on the initial concentration of the reactant except for the first order reaction.
Answer to Problem 20.27E
The expression for half-life for a reaction whose order is
Explanation of Solution
The rate law for a reaction whose order is
This law is rearranged as,
Where,
•
•
Integrate the given equation from
The constants are kept out of the integral and the equation is integrated.
Apply the limits in the above equation as shown below.
Thus, equation (1) represents the integrated rate law.
At half-life, that is, at time
Substitute
Thus, the half-life for a reaction whose order is
The expression for half-life for a reaction whose order is
Want to see more full solutions like this?
Chapter 20 Solutions
Bundle: Physical Chemistry, 2nd + Student Solutions Manual
- Part 1. Draw monomer units of the following products and draw their reaction mechanism 1) Bakelite like polymer Using: Resorcinol + NaOH + Formalin 2) Polyester fiber Using a) pthalic anhydride + anhydrous sodium acetate + ethylene glycol B)pthalic anhydride + anhydrous sodium acetate + glycerol 3) Temporary cross-linked polymer Using: 4% polyvinyl alcohol+ methyl red + 4% sodium boratearrow_forwardUsing the table of Reactants and Products provided provide the correct letter that corresponds with the Carboxylic acid that is formed in the reaction below. 6 M NaOH Acid-workup WRITE THE CORRECT LETTER ONLY DO NOT WRITE EXTRA WORDS OR PHRASES A) Pool of Reagents for Part B CI B) OH C) E) CI J) racemic F) K) OH N) OH P) G) OH D) HO H) L) M) HO Q) R) CI Aarrow_forwardIn the table below, the exact chemical structures for Methyl salicylate can be represented by the letter WRITE THE CORRECT LETTER ONLY DO NOT WRITE EXTRA WORDS OR PHRASES CI B) A) E) Cl racemic F) J) CI K) N) OH P) Pool of Reagents for Part B OH OH G) L) OH D) HO H) M) HO Q) R) CIarrow_forward
- Draw the stepwise mechanism for the reactionsarrow_forwardPart I. a) Draw reaction mechanism for the transformations of benzophenone to benzopinacol to benzopinaco lone b) Pinacol (2,3-dimethyl, 1-3-butanediol) on treatment w/ acid gives a mixture of pina colone (3,3-dimethyl-2-butanone) and 2, 3-dimethyl - 1,3-butadiene. Give reasonable mechanism the formation of the products Forarrow_forward3. The explosive decomposition of 2 mole of TNT (2,4,6-trinitrotoluene) is shown below: Assume the C(s) is soot-basically atomic carbon (although it isn't actually atomic carbon in real life). 2 CH3 H NO2 NO2 3N2 (g)+7CO (g) + 5H₂O (g) + 7C (s) H a. Use bond dissociation energies to calculate how much AU is for this reaction in kJ/mol.arrow_forward
- Part I. Draw reaction mechanism for the transformations of benzophenone to benzopinacol to benzopinaco lone and answer the ff: Pinacol (2,3-dimethyl, 1-3-butanediol) on treatment w/ acid gives a mixture of pina colone and (3,3-dimethyl-2-butanone) 2,3-dimethyl-1,3-butadiene. Give reasonable mechanism the formation of the products Forarrow_forwardShow the mechanism for these reactionsarrow_forwardDraw the stepwise mechanismarrow_forward
- Draw a structural formula of the principal product formed when benzonitrile is treated with each reagent. (a) H₂O (one equivalent), H₂SO₄, heat (b) H₂O (excess), H₂SO₄, heat (c) NaOH, H₂O, heat (d) LiAlH4, then H₂Oarrow_forwardDraw the stepwise mechanism for the reactionsarrow_forwardDraw stepwise mechanismarrow_forward
- Physical ChemistryChemistryISBN:9781133958437Author:Ball, David W. (david Warren), BAER, TomasPublisher:Wadsworth Cengage Learning,Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStax
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning



