(a)
Interpretation:
The time taken by the given thermal decomposition reaction of mercuric oxide to produce
Concept introduction:
The rate law for second order reaction is represented as,
This represents the case in which identical reactants are present. In the second order kinetics,
Where,
•
•
•

Answer to Problem 20.23E
The time taken by the given thermal decomposition reaction of mercuric oxide to produce
The amount of time taken in second order kinetics to produce the same amount of gas is higher than that of the first order kinetics.
Explanation of Solution
It is given that the thermal decomposition of mercuric oxide follows second order kinetics and the rate constant is
The initial amount of
The number of moles of
Where,
•
•
•
•
•
Substitute the values of pressure, volume, gas constant and temperature in the above formula.
Thus, the number of moles of
The amount of
The molar mass of
Substitute the number of moles and molar mass of
The amount of
The amount of
Thus, the amount of
The rate law for the given second order reaction is given by,
Where,
•
•
•
Substitute the values of initial amount, amount at time
Under the assumption of standard temperature and pressure, units cancel out such that the equation becomes,
Thus, the time taken by the given thermal decomposition reaction of mercuric oxide to produce
On comparison of the time taken by first order kinetics and second order kinetics, it is observed that the amount of time taken in second order kinetics to produce the same amount of gas is higher than the first order kinetics.
The time taken by the given thermal decomposition reaction of mercuric oxide to produce
The amount of time taken in second order kinetics to produce the same amount of gas is higher than the first order kinetics.
(b)
Interpretation:
The time taken by the given thermal decomposition reaction of mercuric oxide to produce
Concept introduction:
The rate law for second order reaction is represented as,
This represents the case in which identical reactants are presents. In the second order kinetics rate of the reaction is proportional to the square of concentration of the reactant. The integrated rate law for second order reaction is represented as,
Where,
•
•
•

Answer to Problem 20.23E
The time taken by the given thermal decomposition reaction of mercuric oxide to produce
The amount of time taken in second order kinetics to produce the same amount of gas is higher than that of the first order kinetics.
Explanation of Solution
It is given that the thermal decomposition of mercuric oxide follows second order kinetics and the rate constant is
The initial amount of
The number of moles of
Where,
•
•
•
•
•
Substitute the values of pressure, volume, gas constant and temperature in the above formula.
Thus, the number of moles of
The amount of
The molar mass of
Substitute the number of moles and molar mass of
The amount of
The amount of
Thus, the amount of
The rate law for the given second order reaction is given by,
Where,
•
•
•
Substitute the values of initial amount, amount at time
Under the assumption of standard temperature and pressure, units cancel out such that the equation becomes,
Thus, the time taken by the given thermal decomposition reaction of mercuric oxide to produce
On comparison of the time taken by first order kinetics and second order kinetics, it is observed that the amount of time taken in second order kinetics to produce the same amount of gas is higher than that of the first order kinetics.
The time taken by the given thermal decomposition reaction of mercuric oxide to produce
The amount of time taken in second order kinetics to produce the same amount of gas is higher than that of the first order kinetics.
Want to see more full solutions like this?
Chapter 20 Solutions
Bundle: Physical Chemistry, 2nd + Student Solutions Manual
- Experiment 27 hates & Mechanisms of Reations Method I visual Clock Reaction A. Concentration effects on reaction Rates Iodine Run [I] mol/L [S₂082] | Time mo/L (SCC) 0.04 54.7 Log 1/ Time Temp Log [ ] 13,20] (time) / [I] 199 20.06 23.0 30.04 0.04 0.04 80.0 22.8 45 40.02 0.04 79.0 21.6 50.08 0.03 51.0 22.4 60-080-02 95.0 23.4 7 0.08 0-01 1970 23.4 8 0.08 0.04 16.1 22.6arrow_forward(15 pts) Consider the molecule B2H6. Generate a molecular orbital diagram but this time using a different approach that draws on your knowledge and ability to put concepts together. First use VSEPR or some other method to make sure you know the ground state structure of the molecule. Next, generate an MO diagram for BH2. Sketch the highest occupied and lowest unoccupied MOs of the BH2 fragment. These are called frontier orbitals. Now use these frontier orbitals as your basis set for producing LGO's for B2H6. Since the BH2 frontier orbitals become the LGOS, you will have to think about what is in the middle of the molecule and treat its basis as well. Do you arrive at the same qualitative MO diagram as is discussed in the book? Sketch the new highest occupied and lowest unoccupied MOs for the molecule (B2H6).arrow_forwardQ8: Propose an efficient synthesis of cyclopentene from cyclopentane.arrow_forward
- Q7: Use compound A-D, design two different ways to synthesize E. Which way is preferred? Please explain. CH3I ONa NaOCH 3 A B C D E OCH3arrow_forwardPredict major product(s) for the following reactions. Note the mechanism(s) of the reactions (SN1, E1, SN2 or E2).arrow_forward(10 pts) The density of metallic copper is 8.92 g cm³. The structure of this metal is cubic close-packed. What is the atomic radius of copper in copper metal?arrow_forward
- Predict major product(s) for the following reactions. Note the mechanism(s) of the reactions (SN1, E1, SN2 or E2).arrow_forwardPredict major product(s) for the following reactions. Note the mechanism(s) of the reactions (SN1, E1, SN2 or E2).arrow_forwardQ3: Rank the following compounds in increasing reactivity of E1 and E2 eliminations, respectively. Br ca. go do A CI CI B C CI Darrow_forward
- Q5: Predict major product(s) for the following reactions. Note the mechanism(s) of the reactions (SN1, E1, SN2 or E2). H₂O דיי "Br KN3 CH3CH2OH NaNH2 NH3 Page 3 of 6 Chem 0310 Organic Chemistry 1 HW Problem Sets CI Br excess NaOCH 3 CH3OH Br KOC(CH3)3 DuckDuckGarrow_forwardQ4: Circle the substrate that gives a single alkene product in a E2 elimination. CI CI Br Brarrow_forwardPlease calculate the chemical shift of each protonsarrow_forward
- Physical ChemistryChemistryISBN:9781133958437Author:Ball, David W. (david Warren), BAER, TomasPublisher:Wadsworth Cengage Learning,Principles of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStax
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning





