In the discussion on the composition of air, mention is made of the fact that water vapor may have a concentration as high as 40,000 ppm. Calculate the partial pressure exerted by water vapor at this concentration. Assume that this represents a situation with 100% humidity. What temperature would be needed to achieve this value? (See Appendix G.)
Interpretation:
The partial pressure exerted by water vapor at
Concept introduction:
Parts per million (ppm) concentrations: It is the ratio of the number of grams of solute for every one million grams of solution.
For gases, ppm refers to numbers of particles and hence to mole fraction. And the gas pressure exerted is directly proportional to the mole fraction.
Answer to Problem 1PS
The partial pressure exerted by water vapor at
Explanation of Solution
For gases, ppm refers to numbers of particles and hence to mole fraction. And the gas pressure exerted is directly proportional to the mole fraction.
The pressure exerted by water vapor at
This pressure partial pressure can be achieved if the temperature value reaches above
The partial pressure exerted by water vapor at
Want to see more full solutions like this?
Chapter 20 Solutions
Chemistry & Chemical Reactivity
- How does hydraulic fracturing differ from previously used techniques for the recovery of natural gas from the earth?arrow_forwardWhat possible uses exist for the natural gas liquids that are removed from natural gas during its processing?arrow_forwardEach sketch below shows a flask with some gas and a pool of mercury in it. The gas is at a pressure of 0.5 atm. A J-shaped tube is connected to the bottom of the flask, and the mercury can freely flow in or out of this tube. (You can assume that there is so much more mercury in the pool than can fit into the tube that even if the J-tube is completely filled, the level of mercury in the pool won't change.) Notice also that in the left sketch the J-tube is open at its other end, so that air from the atmosphere can freely flow. On the other hand, in the right sketch the J-tube is closed at its other end, and you should assume there is no gas between the mercury and the closed end of the tube. To answer this question, you must decide what the mercury level will be when the mercury finally stops flowing in or out of the tube. By moving the sliders back and forth, you'll see different levels of mercury in the J-tube. Select the final correct level for each sketch. A open tube closed tube -…arrow_forward
- Each sketch below shows a flask with some gas and a pool of mercury in it. The gas is at a pressure of 1 atm. A J-shaped tube is connected to the bottom of the flask, and the mercury can freely flow in or out of this tube. (You can assume that there is so much more mercury in the pool than can fit into the tube that even if the J-tube is completely filled, the level of mercury in the pool won't change.) Notice also that in the left sketch the J-tube is open at its other end, so that air from the atmosphere can freely flow. On the other hand, in the right sketch the J-tube is closed at its other end, and you should assume there is no gas between the mercury and the closed end of the tube. To answer this question, you must decide what the mercury level will be when the mercury finally stops flowing in or out of the tube. By moving the sliders back and forth, you'll see different levels of mercury in the J-tube. Select the final correct level for each sketch. 1 1 2 I Don't Know open tube…arrow_forwardPlease explain the differences between Absolute Humidity and Specific Humidity when it comes to the presence/potential presence of Water Vapor in the Earth's Atmosphere, and what Volume and Mass have to do with it?arrow_forwardWhen solid calcium carbonate is reacted with aqueous hydrochloric acid, the products of the reaction include aqueous calcium chloride, liquid water, and gaseous carbon dioxide. Calculate the volume of CO₂ gas (in L) collected over water at 25.0 °C when 25.1 g of calcium carbonate is added to excess hydrochloric acid if the total pressure is 911.0 mmHg. The vapor pressure of water at 25.0 °C is 23.8 mmHg.arrow_forward
- To prevent tank rupture during deep-space travel, an engineering team is studying the effect of temperature on gases confined to small volumes. What is the pressure of 2.00 molmol of gas DD measured at 251 ∘C∘C in a 1.75-LL container assuming ideal behavior?arrow_forwardWhen solid calcium carbonate is reacted with aqueous hydrochloric acid, the products of the reaction include aqueous calcium chloride, liquid water, and gaseous carbon dioxide. Calculate the volume of CO2 gas (in L) collected over water at 25.0 °C when 35.5 g of calcium carbonate is added to excess hydrochloric acid if the total pressure is 911.0 mmHg. The vapor pressure of water at 25.0 °C is 23.8 mmHg. Larrow_forwardA balloon is sealed with 1.00 mol argon in a laboratory. The laboratory workspace is at sea level and the temperature is room temperature. From the list of choices below. check all of the changes that would increase the volume of this balloon. Placing the balloon into a warm (40 °C) environment, such as a water bath. Moving the balloon to a different room-temperature laboratory at the top of a mountain. Somehow (magically?) changing all of the argon atoms in the balloon to xenon atoms. Allowing 0.10 mol of argon to be removed from the balloon.arrow_forward
- 1. The partial pressure of oxygen is 0.20 atm at sea level at 25°C. Calculate its partial pressure at an altitude of 30 km (the stratosphere).arrow_forwardWhat is the experimental molar mass (that is, calculated from the data given and not taken from the periodic table) of magnesium if 0.0278 grams of magnesium generates 28.92 mL of hydrogen at 22.2 °C with a hydrogen partial pressure of 727.5 torr? Note that the partial pressure of water vapor has already been subtracted from the total pressure. In the lab, you used 2.0 mM FD&C Red Dye No. 40 solution. How much solid dye, molar mass 496.42 g/mol, should be dissolved to make 8.20 liters of 8.61 mM FD&C Red Dye No. 40 solution? Hint, 2.0 mM is 0.0020 M.arrow_forwardThe vapor pressure of mercury at 20 oC is 1.7 x 10-6 atm. Your lab partner breaks a mercury thermometer and spills most of the mercury onto the floor. The dimensions of the laboratory are 16.0 m x 8.0 m x 3.0 m (l x w x h). At 20 oC, calculate the mass (in grams) of the mercury vapor in the room. Determine if the concentration of mercury vapor exceeds air quality regulations of 5.0 x 10-2 mg/m3. How would you clean up this spell?arrow_forward
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning