Physics, Books a la Carte Edition (5th Edition)
5th Edition
ISBN: 9780134020853
Author: James S. Walker
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 20, Problem 19PCE
Find the potential difference required to accelerate protons from rest to 10% of the
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A positron (a particle with a charge +e and a mass equal to that of electron) that is accelerated from rest between two points at a fixed potential difference acquires a speed of 9.0x10^7 m/s. What speed is achieved by a proton accelerated from rest between the same two points? (Disregard relativistic effects.)
a) 2.5x10^6 m/s
b) 2.1x10^6 m/s
c) 2.8x10^7 m/s
d) 4.9x10^7m/s
e) None of the Above
Suppose an electron is accelerated from rest through a potential difference of 100,000 volts. Determine the electron's final kinetic energy, speed, and momentum (a) ignoring relativistic effects and (b) including relativistic effects.
Please see attached question
Chapter 20 Solutions
Physics, Books a la Carte Edition (5th Edition)
Ch. 20.1 - The electric potential in system A changes...Ch. 20.2 - Particle A accelerates from rest through a...Ch. 20.3 - The following systems consist or a point charge at...Ch. 20.4 - Figure 20-14 shows a series of equipotential...Ch. 20.5 - Two parallel-plate capacitors are identical,...Ch. 20.6 - The following systems consist of a capacitor for...Ch. 20 - In one region of space the electric potential has...Ch. 20 - If the electric field is zero in some region of...Ch. 20 - Sketch the equipotential surface that goes through...Ch. 20 - How much work is required to move a charge from...
Ch. 20 - It is known that the electric potential is...Ch. 20 - Explain why equipotentials are always...Ch. 20 - Two charges are at locations that have the same...Ch. 20 - A capacitor is connected to a battery and fully...Ch. 20 - On which of the following quantities does the...Ch. 20 - We say that a capacitor stores charge, yet the...Ch. 20 - An electron is released from rest in a region of...Ch. 20 - A uniform electric field of magnitude 3.8 105 N/C...Ch. 20 - A uniform electric field of magnitude 6.8 105 N/C...Ch. 20 - BIO Electric Potential Across a Cell Membrane In a...Ch. 20 - An old-fashioned computer monitor accelerates...Ch. 20 - A parallel-plate capacitor has plates separated by...Ch. 20 - When an ion accelerates through a potential...Ch. 20 - The Electric Potential of the Earth The Earth has...Ch. 20 - A uniform electric field with a magnitude of 6860...Ch. 20 - Predict/Calculate A spark plug in a car has...Ch. 20 - A uniform electric field with a magnitude of 1200...Ch. 20 - A Charged Battery A typical 12-V car battery can...Ch. 20 - BIO Predict/Calculate The Sodium Pump Living cells...Ch. 20 - Predict/Calculate The electric potential of a...Ch. 20 - Points A and B have electric potentials of 332 V...Ch. 20 - Predict/Explain An electron is released from rest...Ch. 20 - Calculate the speed of (a) a proton and (b) an...Ch. 20 - Ion Thrusters NASAs Deep Space 1 and Dawn...Ch. 20 - Find the potential difference required to...Ch. 20 - Predict/Calculate A particle with a mass of 3.8 g...Ch. 20 - Conduction Electrons In the microscopic view of...Ch. 20 - A proton has an initial speed of 5.5 105 m/s. (a)...Ch. 20 - In Figure 20-29, q1 = +1.8 nC and q2 = 2.1 nC, and...Ch. 20 - In Figure 20-29, it is given that, q1 = +Q. (a)...Ch. 20 - CE The charge q1 in Figure 20-29 has the value +Q....Ch. 20 - CE It is given that the electric potential is zero...Ch. 20 - The electric potential 1.6 m from a point charge q...Ch. 20 - A point charge of 9.2 C is at the origin. What is...Ch. 20 - The Bohr Atom The hydrogen atom consists of one...Ch. 20 - How far must the point charges q1 = +6.22 C and q2...Ch. 20 - Four different arrangements of point charges are...Ch. 20 - Predict/Calculate Point charges +4.1 C and 2.2C...Ch. 20 - In Figure 20-31, the charge q = 4.11 10-9C. (a)...Ch. 20 - Predict/Calculate In Figure 20-31, the charge q =...Ch. 20 - A charge of 4.07C is held fixed at the origin. A...Ch. 20 - Predict/Calculate A charge of 20.2 C is held fixed...Ch. 20 - A charge of 2.505 C is located at (3.055 m, 4.501...Ch. 20 - Predict/Calculate Figure 20-32 shows three charges...Ch. 20 - How much work must be done to move the three...Ch. 20 - (a) Find the electric potential at point P in...Ch. 20 - A square of side a has a charge +Q at each corner....Ch. 20 - A square of side a has charges +Q and Q...Ch. 20 - Predict/Explain (a) is the electric potential at...Ch. 20 - Predict/Explain Imagine sketching a large number...Ch. 20 - Two point charges are on the x axis. Charge 1 is...Ch. 20 - Figure 20-35 shows a series of equipotentials in a...Ch. 20 - Predict/Calculate Consider a region in space where...Ch. 20 - A given system has the equipotential surfaces...Ch. 20 - A given system has the equipotential surfaces...Ch. 20 - A 0.75-F capacitor is connected to a 9.0-V...Ch. 20 - It is desired that 7.7 C of charge be stored on...Ch. 20 - To operate a given flash lamp requires a charge of...Ch. 20 - Planet Capacitor It can be shown that the...Ch. 20 - A parallel-plate capacitor is made from two...Ch. 20 - A parallel-plate capacitor is constructed with...Ch. 20 - Predict/Calculate A parallel-plate capacitor has...Ch. 20 - Predict/Calculate A 72-nF parallel-plate capacitor...Ch. 20 - Predict/Calculate Consider a parallel-plate...Ch. 20 - A parallel-plate capacitor has plates of area 3.75...Ch. 20 - Predict/Calculate A parallel-plate capacitor...Ch. 20 - Suppose that after walking across a carpeted floor...Ch. 20 - (a) What plate area is required for an air-filled,...Ch. 20 - Lightning As a crude model for lightning, consider...Ch. 20 - A parallel-plate capacitor is made from two...Ch. 20 - Calculate the work done by a 9.0-V battery as it...Ch. 20 - BIO Defibrillator An automatic external...Ch. 20 - BIOPredict/Calculate Cell Membranes The membrane...Ch. 20 - A capacitor with plate area 0.0440 m2 and plate...Ch. 20 - Find the electric energy density between the...Ch. 20 - What electric field strength would store 17.5 J of...Ch. 20 - An electronic flash unit for a camera contains a...Ch. 20 - A parallel-plate capacitor has plates with an area...Ch. 20 - CE Predict/Explain A proton is released from rest...Ch. 20 - CE The plates of a parallel-plate capacitor have...Ch. 20 - CE A parallel-plate capacitor is connected to a...Ch. 20 - CE The plates of a parallel-plate capacitor have...Ch. 20 - CE A parallel-plate capacitor is connected to a...Ch. 20 - Find the difference in electric potential, V = VB ...Ch. 20 - A 0.32-F capacitor is charged by a 1.5-V battery....Ch. 20 - A charge of 22.5 C is located at (4.40 m, 6.22 m),...Ch. 20 - The Bohr Model In the Bohr model of the hydrogen...Ch. 20 - Predict/Calculate A +1.2-C charge and a 1.2-C...Ch. 20 - How much work is required to bring three protons,...Ch. 20 - A point charge Q = +87.1 C is held fixed at the...Ch. 20 - Electron Escape Speed An electron is at rest just...Ch. 20 - Quark Model of the Neutron According to the quark...Ch. 20 - A parallel-plate capacitor is charged to an...Ch. 20 - Predict/Calculate The three charges shown in...Ch. 20 - (a) In Figure 20-36 we see that the electric...Ch. 20 - BIO Predict/Calculate Electric Catfish The...Ch. 20 - Regenerative Braking Many electric cars can...Ch. 20 - Predict/Calculate Computer Keyboards Many computer...Ch. 20 - Predict/Calculate A point charge of mass 0.081 kg...Ch. 20 - BIO Cell Membranes and Dielectrics Many cells in...Ch. 20 - BIO Mitochondrial Membrane Every cell in the body...Ch. 20 - Long, long ago, on a planet far, far away, a...Ch. 20 - Rutherfords Planetary Model of the Atom In 1911,...Ch. 20 - Predict/Calculate (a) One of the Q charges in...Ch. 20 - Figure 20-38 shows a charge q = +6.77 C with a...Ch. 20 - The electric potential a distance r from a point...Ch. 20 - When the potential difference between the plates...Ch. 20 - The electric potential a distance r from a point...Ch. 20 - BIO The Electric Eel Of the many unique and...Ch. 20 - As a rough approximation, consider an electric eel...Ch. 20 - In terms of the parallel-plate model of the...Ch. 20 - How much energy is stored by an electric eel when...Ch. 20 - Predict/Calculate Referring to Example 20-9...Ch. 20 - Referring to Example 20-9 Suppose we can change...Ch. 20 - Predict/Calculate Referring to Example 20-9...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Hydrogen gas can be prepared in the laboratory by a single-displacement reaction in which solid zinc reacts wit...
Introductory Chemistry (6th Edition)
What is the difference between cellular respiration and external respiration?
Human Physiology: An Integrated Approach (8th Edition)
Determine [OH], [H+], and the pH of each of the following solutions. a. 1.0 M KCl b. 1.0 M KC2H3O2
Chemistry
1.1 Write a one-sentence definition for each of the following:
a. chemistry
b. chemical
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Why are BSL-4 suits pressurized? Why not just wear tough regular suits?
Microbiology with Diseases by Body System (5th Edition)
1. Define and distinguish incomplete penetrance and variable expressivity.
Genetic Analysis: An Integrated Approach (3rd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Alpha decay is nuclear decay in which a helium nucleus is emitted. If the helium nucleus has a mass of 6.801027 kg and is given 5.00 MeV of kinetic energy, what is its velocity?arrow_forwardUnreasonable Results A proton has a mass of 1.671027 kg. A physicist measures the proton's total energy to be 50.0 MeV. (a) What is the proton's kinetic energy? (b) What is unreasonable about this result? (c) Which assumptions are unreasonable or inconsistent?arrow_forwardThe creation and study of new and very massive elementary particles is an important part of contemporary physics. To create a particle of mass M requires an energy Mc2 . With enough energy, an exotic particle can be created by allowing a fast-moving proton to collide with a similar target particle. Consider a perfectly inelastic collision between two protons: an incident proton with mass kinetic energy K, and momentum magnitude p joins with an originally stationary target proton to form a single product particle of mass M. Not all the kinetic energy of the incoming proton is available to create the product particle because conservation of momentum requires that the system as a whole still must have some kinetic energy after the collision. Therefore, only a fraction of the energy of the incident particle is available to create a new particle. (a) Show that the energy available to create a product particle is given by Mc2=2mpc21+K2mpc2 This result shows that when the kinetic energy K of the incident proton is large compared with its rest energy mpc2, 2then M approaches (2mpK)1/2/c. Therefore, if the energy of the incoming proton is increased by a factor of 9, the mass you can create increases only by a factor of 3, not by a factor of 9 as would be expected. (b) This problem can be alleviated by using colliding beams as is the case in most modern accelerators. Here the total momentum of a pair of interacting particles can be zero. The center of mass can be at rest after the collision, so, in principle, all the initial kinetic energy can be used for particle creation. Show that Mc2=2mc2(1+Kmc2) where K is the kinetic energy of each of the two identical colliding particles. Here, if k mc2, we have M directly proportional to K as we would desire.arrow_forward
- A Van de Graaff accelerator utilizes a 50.0 MV potential difference to accelerate charged particles such as protons. (a) What is the velocity of a proton accelerated by such a potential? (b) An electron?arrow_forward(a) Calculate for a proton that has a momentum of 1.00 kgm/s. (b) What is its speed? Such protons form a rare component of cosmic radiation with uncertain origins.arrow_forward(a) Calculate the relativistic quantity =11v2/c2for 1.00-TeV protons produced at Fermilab. (b) If such a proton created a +having the same speed, how long would its life be in the laboratory? (c) How far could it travel in this time?arrow_forward
- One cosmic ray neutron has a velocity of 0.250c relative to the Earth. (a) What is the neutron's total energy in MeV? (b) Find its momentum. (c) Is Epc in this situation? Discuss in terms of the equation given in part (a) of the previous problem.arrow_forward(a) Using data from Table 7.1, find the mass destroyed when the energy in a barrel of crude oil is released. (b) Given these barrels contain 200 liters and assuming the density of crude oil is 750 kg/m3, what is the ratio of mass destroyed to original mass, m/m ?arrow_forwardA positron is an antimatter version of the electron, having exactly the same mass. When a positron and an electron meet, they annihilate, converting all of their mass into energy. (a) Find the energy released, assuming negligible kinetic energy before the annihilation. (b) If this energy is given to a proton in the form of kinetic energy, what is its velocity? (c) If this energy is given to another electron in the form of kinetic energy, what is its velocity?arrow_forward
- (a) What is the effective accelerating potential for electrons at the Stanford Linear Accelerator, if =1.00105 for them? (b) What is their total energy (nearly the same as kinetic in this case) in GeV?arrow_forwardIn this problem, we will try to understand why chemical reactions cannot power the Sun, but nuclear reactions can. The energy scale of chemical reactions is a few eV, where eV is a unit of energy called an electron volt. 1 eV = 1.602 x 10-19 J. A typical chemical reaction involves an energy change of ~0.1 to 10 eV. In contrast, a nuclear reaction typically involves a change in energy of order a few MeV (mega electron volts; a factor of a million larger). Suppose that the Sun has a constant luminosity throughout its life, equal to its current luminosity of L⊙=3.827×1026J/s . Suppose also that the Sun is made entirely of hydrogen (or just protons, since the mass of the electron is about 2000 times smaller and is negligible in comparison). If every pair of two protons in the Sun undergo a one-time chemical reaction that nets ~1 eV of energy, how long would it take (in years) to expend all the available chemical energy?arrow_forwardThrough what potential difference does an electron have to be accelerated, starting from rest, to achieve a speed of 0.980c? (b) What is the kinetic energy of the electron at this speed?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Time Dilation - Einstein's Theory Of Relativity Explained!; Author: Science ABC;https://www.youtube.com/watch?v=yuD34tEpRFw;License: Standard YouTube License, CC-BY