Concept explainers
BIO Mitochondrial Membrane Every cell in the body has organelles called mitochondria that can generate a voltage difference between their interior and exterior. (a) If the capacitance of a mitochondrion is 4.3 × 10-11 F and the potential difference between the interior and exterior is 0.18 V, how much electrical energy does it store? (b) If a mitochondrion were to use all of its stored electrical energy to produce ATP molecules, and each ATP molecule requires 9.5 × 10-20 J, how many molecules could it produce? (In reality, ATP molecules are produced by the flow of protons caused by the proton motive force, and not by the direct conversion of electrical energy stored by the capacitance of mitochondria.)
Want to see the full answer?
Check out a sample textbook solutionChapter 20 Solutions
Physics, Books a la Carte Edition (5th Edition)
Additional Science Textbook Solutions
Campbell Biology in Focus (2nd Edition)
College Physics: A Strategic Approach (3rd Edition)
Cosmic Perspective Fundamentals
Applications and Investigations in Earth Science (9th Edition)
Chemistry: A Molecular Approach (4th Edition)
Campbell Biology: Concepts & Connections (9th Edition)
- When a Leyden jar is charged by a hand generator (Fig. 27.1, page 828), the work done by the person turning the crank is stored as electric potential energy in the jar. When a capacitor is charged by a battery, where does the electric potential energy come from?arrow_forwardA variable air capacitor used in a radio tuning circuit is made of N semicircular plates, each of radius R and positioned a distance d from its neighbors, to which it is electrically connected. As shown in Figure P20.38, a second identical set of plates is enmeshed with the first set. Each plate in the second set is halfway between two plates of the first set. The second set can rotate as a unit. Determine the capacitance as a function of the angle of rotation , where = 0 corresponds to the maximum capacitance. Figure P20.38arrow_forwardAccording to UE=12C(V)2 (Eq. 27.3), a greater capacitance means more energy is stored by the capacitor, but according to UE = Q2/2C (Eq. 27.2), a greater capacitance means less energy is stored. How can both of these equations be correct?arrow_forward
- Consider the circuit shown in Figure P20.52, where C1 = 6.00 F, C2 = 3.00 F, and V = 20.0 V. Capacitor C1 is first charged by closing switch S1. Switch S1 is then opened, and the charged capacitor is connected to the uncharged capacitor by closing S2. Calculate (a) the initial charge acquired by C1 and (b) the final charge on each capacitor. Figure P20.52arrow_forwardConsider the circuit shown in Figure P26.24, where C1, = 6.00 F, C2 = 3.00 F. and V = 20.0 V. Capacitor C1 is first charged by closing switch S1. Switch S1 is then opened, and the charged capacitor is connected to the uncharged capacitor by closing Calculate (a) the initial charge acquired by C, and (b) the final charge on each capacitor.arrow_forwardTwo capacitors, C1 = 18.0 F and C2 = 36.0 F, are connected in series, and a 12.0-V battery is connected across the two capacitors. Find (a) the equivalent capacitance and (b) the energy stored in this equivalent capacitance. (c) Find the energy stored in each individual capacitor. (d) Show that the sum of these two energies is the same as the energy found in part (b). (e) Will this equality always be true, or docs it depend on the number of capacitors and their capacitances? (f) If the same capacitors were connected in parallel, what potential difference would be required across them so that the combination stores the same energy as in part (a)? (g) Which capacitor stores more energy in this situation, C1 or C2?arrow_forward
- The immediate cause of many deaths is ventricular fibrillation, an uncoordinated quivering of the heart, as opposed to proper beating. An electric shock to the chest can cause momentary paralysis of the heart muscle, after which the heart will sometimes start organized beating again. A defibrillator is a device that applies a strong electric shock to the chest over a time of a few milliseconds. The device contains a capacitor of a few microfarads, charged to several thousand volts. Electrodes called paddles, about 8 cm across and coated with conducting paste, are held against the chest on both sides of the heart. Their handles are insulated to prevent injury to the operator, who calls Clear! and pushes a button on one paddle to discharge the capacitor through the patient's chest Assume an energy of 3.00 102 W s is to be delivered from a 30.0-F capacitor. To what potential difference must it be charged?arrow_forward(a) Find the equivalent capacitance between points a and b for the group of capacitors connected as shown in Figure P16.46 if C1 = 5.00 F, C2 = 10.00 F, and C3 = 2.00 F. (b) If the potential between points a and b is 60.0 V, what charge is stored on C5? Figure P16.46arrow_forwardElectronic flash units for cameras contain a capacitor for storing the energy used to produce the flash. In one such unit the flash lasts for 1/675 fraction of a second with an average light power output of 270 kW. (a) If the conversion of electrical energy to light is 95% efficient (because the rest of the energy goes to thermal energy), how much energy must be stored in the capacitor for one flash? (b) The capacitor has a potential difference between its plates of 125 V when the stored energy equals the value stored in part (a). What is the capacitance?arrow_forward
- Unreasonable Results (a) An 8.00 F capacitor is connected in parallel to another capacitor, producing a total capacitance of 5.00 F. What is the capacitance of the second capacitor? (b) What is unreasonable about this result? (C) Which assumptions are unreasonable or inconsistent?arrow_forwardIf you have ever tried to hang a picture or a mirror, you know it can be difficult to locate a wooden stud in which to anchor your nail or screw. A carpenters stud finder is a capacitor with its plates arranged side by side instead of facing each other as shown in Figure 20.32. When the device is moved over a stud, does the capacitance (a) increase or (b) decrease?arrow_forwardA pair of capacitors with capacitances CA = 3.70 F and CB = 6.40 F are connected in a network. What is the equivalent capacitance of the pair of capacitors if they are connected a. in parallel and b. in series?arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning