Concept explainers
BIO The Electric Eel
Of the many unique and unusual animals that inhabit the rainforests of South America, one stands out because of its mastery of electricity. The electric eel (Electrophorus electricus), one of the few creatures on Earth able to generate, store, and discharge electricity, can deliver a powerful series of high-voltage discharges reaching 650 V. These jolts of electricity are so strong, in fact, that electric eels have been known to topple a horse crossing a stream 20 feet away, and to cause respiratory paralysis, cardiac arrhythmia, and even death in humans. Though similar in appearance to an eel, the electric “eel” is actually more closely related to catfish. They are found primarily in the Amazon and Orinoco river basins, where they navigate the slow-moving, muddy water with low-voltage electric organ discharges (EOD), saving the high-voltage EODs for stunning prey and defending against predators. Obligate air breathers, electric eels obtain about 80% of their oxygen by gulping air at the water’s surface. Even so, they are able to attain lengths of 2.5 m and a mass of 20 kg.
The organs that produce the eel’s electricity take up most of its body, and consist of thousands of modified muscle cells—called electroplaques—stacked together like the cells in a battery. Each electroplaque is capable of generating a voltage of 0.15 V, and together they produce a positive charge near the head of the eel and a negative charge near its tail.
• Electric eels produce an electric field within their body. In which direction does the electric field point?
- A. toward the head
- B. toward the tail
- C. upward
- D. downward
Want to see the full answer?
Check out a sample textbook solutionChapter 20 Solutions
Physics, Books a la Carte Edition (5th Edition)
Additional Science Textbook Solutions
Laboratory Experiments in Microbiology (12th Edition) (What's New in Microbiology)
Human Anatomy & Physiology (2nd Edition)
Microbiology with Diseases by Body System (5th Edition)
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Anatomy & Physiology (6th Edition)
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
- You are part of a team working in a machine parts mechanics shop. An important customer has asked your company to provide springs with a very precise force constant k. You dense the electrical circuit shown in Figure P25.45 to measure the spring constant of each of the springs to be provided to the customer. The circuit consists of two identical, parallel metal plates free to move, other than being connected to identical metal springs, a switch, and a battery with terminal voltage V. With the switch open, the plates are uncharged, are separated by a distance d, and have a capacitance C. When the switch is closed, the plates become charged and attract each other. The distance between the plates changes by a factor f, after which the plates are in equilibrium between the spring forces and the attractive electric force between the plates. To keep the plates from going into oscillations, you hold each plate with insulating gloves as the switch is closed and apply a force on the plates that allows them to move together at a slow constant speed until they are at the equilibrium separation, at which point you can release the plates. You determine an expression for the spring constant in terms of C, d, V, and f. Figure P25.45 Problems 45 and 50.arrow_forwardIntegrated Concepts (a) What voltage will accelerate electrons to a speed of 6.00107m/s ? (b) Find the radius of curvature of the path of a proton accelerated through this potential in a 0.500-T field and compare this with the radius of curvature of an electron accelerated through the same potential.arrow_forwardUnreasonable Results (a) What is the final speed of an electron accelerated from rest through a voltage of 25.0 MV by a negatively charged Van de Graaff terminal? (b) What is unreasonable about this result? (C) Which assumptions are responsible?arrow_forward
- In places such as hospital operating rooms or factories for electronic circuit boards, electric sparks must be avoided. A prison standing on a grounded floor and touching nothing else can typically have a body capacitance of 150 pF, in parallel with a foot capacitance of 80.0 pF produced by the dielectric soles of his or her shoes. The person acquires static electric charge from interactions with Ills or her surroundings. The static charge flows to ground through the equivalent resistance of the two shoe soles in parallel with each other. A pair of rubber-soled street shoes can present an equivalent resistance of 5.00 103 M. A pair of shoes with special static-dissipative soles can have an equivalent resistance of 1.00 M. Consider the persons body and shoes as forming an RC circuit with the ground. (a) How long does it take the rubber-soled shoes to reduce a persons potential from 3.00 103 V to 100? (b) How long does it take the static-dissipative shoes to do the same thing?arrow_forwardThe immediate cause of many deaths is ventricular fibrillation, an uncoordinated quivering of the heart, as opposed to proper beating. An electric shock to the chest can cause momentary paralysis of the heart muscle, after which the heart will sometimes start organized beating again. A defibrillator is a device that applies a strong electric shock to the chest over a time of a few milliseconds. The device contains a capacitor of a few microfarads, charged to several thousand volts. Electrodes called paddles, about 8 cm across and coated with conducting paste, are held against the chest on both sides of the heart. Their handles are insulated to prevent injury to the operator, who calls Clear! and pushes a button on one paddle to discharge the capacitor through the patient's chest Assume an energy of 3.00 102 W s is to be delivered from a 30.0-F capacitor. To what potential difference must it be charged?arrow_forward(a) What is the final speed of an electron accelerated from rest through a voltage of 25.0 MV by a negatively charged Van de Graff terminal? (b) What is unreasonable about this result? (c) Which assumptions are responsible?arrow_forward
- Integrated Concepts A lightning bolt strikes a tree, moving 20.0 C of charge through a potential difference of 1.00102 MV. (a) What energy was dissipated? (b) What mass of water could be raised from 15°C to the boiling point and then boiled by this energy? (c) Discuss the damage that could be caused to the tree by the expansion of the boiling steam.arrow_forwardUnreasonable Results (a) On a particular day, it takes 9.60 103 J of electric energy to start a truck’s engine. Calculate the capacitance of a capacitor that could store that amount of energy at 12.0 V. (b) What is unreasonable about this result? (c) Which assumptions are responsible?arrow_forwardA charge Q is placed on a capacitor of capacitance C. The capacitor is connected into the circuit shown in Figure P26.37, with an open switch, a resistor, and an initially uncharged capacitor of capacitance 3C. The switch is then closed, and the circuit comes to equilibrium. In terms of Q and C, find (a) the final potential difference between the plates of each capacitor, (b) the charge on each capacitor, and (c) the final energy stored in each capacitor. (d) Find the internal energy appearing in the resistor. Figure P26.37arrow_forward
- (a) What is the average power output of a heart defibrillator that dissipates 400 J of energy in 10.0 ms? (b) Considering the high-power output, why doesn’t the defibrillator produce serious bums?arrow_forwardThe immediate cause of many deaths is ventricular fibrillation, which is an uncoordinated quivering of the heart. An electric shock to the chest can cause momentary paralysis of the heart muscle, after which the heart sometimes resumes its proper beating. One type of defibrillator (chapter-opening photo, page 777) applies a strong electric shock to the chest over a time interval of a few milliseconds. This device contains a capacitor of several microfarads, charged to several thousand volts. Electrodes called paddles are held against the chest on both sides of tire heart, and the capacitor is discharged through the patient's chest. Assume an energy of 300 J is to be delivered from a 30.0-F capacitor. To what potential difference must it be charged?arrow_forward(a) Why are fish reasonably safe in an electrical storm? (b) Why are swimmers nonetheless ordered to get out of the water in the same circumstance?arrow_forward
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning