Discrete Mathematics
5th Edition
ISBN: 9780134689562
Author: Dossey, John A.
Publisher: Pearson,
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 2, Problem 9SE
To determine
To draw: The Venn diagram for the set
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
1. Show that, for any non-negative random variable X,
EX+E+≥2,
X
E max X.
21.
For each real-valued nonprincipal character x mod k, let
A(n) = x(d) and F(x) = Σ
:
dn
* Prove that
F(x) = L(1,x) log x + O(1).
n
By considering appropriate series expansions,
e². e²²/2. e²³/3.
....
=
= 1 + x + x² + ·
...
when |x| < 1.
By expanding each individual exponential term on the left-hand side
the coefficient of x- 19 has the form
and multiplying out,
1/19!1/19+r/s,
where 19 does not divide s. Deduce that
18! 1 (mod 19).
Chapter 2 Solutions
Discrete Mathematics
Ch. 2.1 - Prob. 1ECh. 2.1 - Prob. 2ECh. 2.1 - Prob. 3ECh. 2.1 - Prob. 4ECh. 2.1 - In Exercises 5–8, compute A × B for each of the...Ch. 2.1 - In Exercises 5–8, compute A × B for each of the...Ch. 2.1 - In Exercises 5–8, compute A × B for each of the...Ch. 2.1 - Prob. 8ECh. 2.1 - Prob. 9ECh. 2.1 - Prob. 10E
Ch. 2.1 - Prob. 11ECh. 2.1 - Prob. 12ECh. 2.1 - Give an example of sets for which , but A ≠ B.
Ch. 2.1 - Give an example of sets for which , but A ≠ B.
Ch. 2.1 - Give an example of sets for which , but A ≠ B.
Ch. 2.1 - Give an example of sets for which (A − B) − C ≠ A...Ch. 2.1 - Use Theorems 2.1 and 2.2 as in Example 2.4 to...Ch. 2.1 - Use Theorems 2.1 and 2.2 as in Example 2.4 to...Ch. 2.1 - Use Theorems 2.1 and 2.2 as in Example 2.4 to...Ch. 2.1 - Prob. 20ECh. 2.1 - Prob. 21ECh. 2.1 - Prob. 22ECh. 2.1 - Prob. 23ECh. 2.1 - Use Theorems 2.1 and 2.2 as in Example 2.4 to...Ch. 2.1 - If A is a set containing m elements and B is a set...Ch. 2.1 - Under what conditions is A − B = B − A?
Ch. 2.1 - Under what conditions is A ⋃ B = A?
Ch. 2.1 - Under what conditions is A ⋂ B = A?
Ch. 2.1 - Prob. 29ECh. 2.1 - Prob. 30ECh. 2.1 - Prob. 31ECh. 2.1 - Prob. 32ECh. 2.1 - Prob. 33ECh. 2.1 - Prob. 34ECh. 2.1 - Prob. 35ECh. 2.1 - Prob. 36ECh. 2.1 - Prob. 37ECh. 2.1 - Prove the set equalities in Exercises...Ch. 2.1 - Prob. 39ECh. 2.1 - Prove that (A × C) ⋃ (B × D) ⊆ (A ⋃ B) × (C ⋃ D).
Ch. 2.2 - In Exercises 1–12, determine which of the...Ch. 2.2 - In Exercises 1–12, determine which of the...Ch. 2.2 - In Exercises 1–12, determine which of the...Ch. 2.2 - In Exercises 1–12, determine which of the...Ch. 2.2 - In Exercises 1-12, determine which of the...Ch. 2.2 - Prob. 6ECh. 2.2 - In Exercises 1–12, determine which of the...Ch. 2.2 - Prob. 8ECh. 2.2 - In Exercises 1–12, determine which of the...Ch. 2.2 - In Exercises 1–12, determine which of the...Ch. 2.2 - In Exercises 1–12, determine which of the...Ch. 2.2 - Prob. 12ECh. 2.2 - In Exercises 13-18, show that the given relation R...Ch. 2.2 - In Exercises 13-18, show that the given relation R...Ch. 2.2 - In Exercises 13-18, show that the given relation R...Ch. 2.2 - In Exercises 13-18, show that the given relation R...Ch. 2.2 - Prob. 17ECh. 2.2 - In Exercises 13–18, show that the given relation R...Ch. 2.2 - Prob. 19ECh. 2.2 - Write the equivalence relation on {1, 2, 3, 4, 5,...Ch. 2.2 - Prob. 21ECh. 2.2 - Prob. 22ECh. 2.2 - Prob. 23ECh. 2.2 - Let R1 and R2 be equivalence relations on sets S1...Ch. 2.2 - Determine the number of relations on a set S...Ch. 2.2 - Prob. 26ECh. 2.2 - Prob. 27ECh. 2.2 - How many partitions are there of a set containing...Ch. 2.2 - Prob. 29ECh. 2.2 - Prob. 30ECh. 2.2 - Prob. 31ECh. 2.2 - Prob. 33ECh. 2.3 - In Exercises 1–8, determine whether the given...Ch. 2.3 - Prob. 2ECh. 2.3 - Prob. 3ECh. 2.3 - Prob. 4ECh. 2.3 - Prob. 5ECh. 2.3 - Prob. 6ECh. 2.3 - Prob. 7ECh. 2.3 - Prob. 8ECh. 2.3 - Prob. 9ECh. 2.3 - Prob. 10ECh. 2.3 - Prob. 11ECh. 2.3 - Prob. 12ECh. 2.3 - Prob. 13ECh. 2.3 - Prob. 14ECh. 2.3 - Prob. 15ECh. 2.3 - Prob. 16ECh. 2.3 - Prob. 17ECh. 2.3 - Prob. 18ECh. 2.3 - Prob. 19ECh. 2.3 - Prob. 20ECh. 2.3 - Prob. 21ECh. 2.3 - Prob. 22ECh. 2.3 - Prob. 23ECh. 2.3 - Prob. 24ECh. 2.3 - Prob. 25ECh. 2.3 - Prob. 26ECh. 2.3 - Prob. 27ECh. 2.3 - Consider the “divides” relation on the set of...Ch. 2.3 - Prob. 29ECh. 2.3 - Prob. 30ECh. 2.3 - Prob. 31ECh. 2.3 - Prob. 32ECh. 2.3 - Prob. 33ECh. 2.3 - Prob. 34ECh. 2.3 - Prob. 35ECh. 2.3 - Prob. 37ECh. 2.3 - Prob. 38ECh. 2.3 - Prob. 39ECh. 2.3 - Prob. 40ECh. 2.3 - Prob. 41ECh. 2.3 - Prob. 42ECh. 2.4 - In Exercises 1–4, determine which of the given...Ch. 2.4 - In Exercises 1–4, determine which of the given...Ch. 2.4 - In Exercises 1–4, determine which of the given...Ch. 2.4 - In Exercises 1–4, determine which of the given...Ch. 2.4 - In Exercises 5–12, determine whether the given g...Ch. 2.4 - In Exercises 5–12, determine whether the given g...Ch. 2.4 - In Exercises 5–12, determine whether the given g...Ch. 2.4 - In Exercises 5–12, determine whether the given g...Ch. 2.4 - In Exercises 5–12, determine whether the given g...Ch. 2.4 - In Exercises 5–12, determine whether the given g...Ch. 2.4 - In Exercises 5–12, determine whether the given g...Ch. 2.4 - In Exercises 5–12, determine whether the given g...Ch. 2.4 - Prob. 13ECh. 2.4 - Prob. 14ECh. 2.4 - Prob. 15ECh. 2.4 - Prob. 16ECh. 2.4 - Prob. 17ECh. 2.4 - Prob. 18ECh. 2.4 - Prob. 19ECh. 2.4 - Prob. 20ECh. 2.4 - Prob. 21ECh. 2.4 - Prob. 22ECh. 2.4 - Prob. 23ECh. 2.4 - Prob. 24ECh. 2.4 - Prob. 25ECh. 2.4 - Prob. 26ECh. 2.4 - Prob. 27ECh. 2.4 - Prob. 28ECh. 2.4 - Prob. 29ECh. 2.4 - Prob. 30ECh. 2.4 - Prob. 31ECh. 2.4 - Prob. 32ECh. 2.4 - Prob. 33ECh. 2.4 - Prob. 34ECh. 2.4 - Prob. 35ECh. 2.4 - Prob. 36ECh. 2.4 - Prob. 37ECh. 2.4 - Prob. 38ECh. 2.4 - Prob. 39ECh. 2.4 - Determine formulas for the functions gf and fg in...Ch. 2.4 - Prob. 41ECh. 2.4 - Prob. 42ECh. 2.4 - Prob. 43ECh. 2.4 - Prob. 44ECh. 2.4 - In Exercises 45–52, Z denotes the set of integers....Ch. 2.4 - In Exercises 45–52, Z denotes the set of integers....Ch. 2.4 - In Exercises 45–52, Z denotes the set of integers....Ch. 2.4 - In Exercises 45–52, Z denotes the set of integers....Ch. 2.4 - Prob. 49ECh. 2.4 - In Exercises 45–52, Z denotes the set of integers....Ch. 2.4 - In Exercises 45–52, Z denotes the set of integers....Ch. 2.4 - Prob. 52ECh. 2.4 - In Exercises 53–60, X denotes the set of real...Ch. 2.4 - In Exercises 53–60, X denotes the set of real...Ch. 2.4 - In Exercises 53–60, X denotes the set of real...Ch. 2.4 - In Exercises 53–60, X denotes the set of real...Ch. 2.4 - In Exercises 53–60, X denotes the set of real...Ch. 2.4 - In Exercises 53–60, X denotes the set of real...Ch. 2.4 - In Exercises 53–60, X denotes the set of real...Ch. 2.4 - In Exercises 53–60, X denotes the set of real...Ch. 2.4 - Find a subset Y of the set of real numbers X such...Ch. 2.4 - Find a subset Y of the set of real numbers X such...Ch. 2.4 - Prob. 63ECh. 2.4 - If X has m elements and Y has n elements, how many...Ch. 2.4 - Prob. 65ECh. 2.4 - Prob. 66ECh. 2.4 - Prob. 67ECh. 2.4 - Prob. 68ECh. 2.4 - Prob. 69ECh. 2.4 - Prob. 70ECh. 2.5 - Compute the Fibonacci numbers F1 through F10.
Ch. 2.5 - Suppose that a number xn is defined recursively by...Ch. 2.5 - Prob. 3ECh. 2.5 - Prob. 4ECh. 2.5 - Prob. 5ECh. 2.5 - Prob. 6ECh. 2.5 - Prob. 7ECh. 2.5 - Prob. 8ECh. 2.5 - Prob. 9ECh. 2.5 - In Exercises 7–10, determine what is wrong with...Ch. 2.5 - In Exercises 11–26, prove each of the given...Ch. 2.5 - In Exercises 11–26, prove each of the given...Ch. 2.5 - Prob. 13ECh. 2.5 - Prob. 14ECh. 2.5 - Prob. 15ECh. 2.5 - Prob. 16ECh. 2.5 - Prob. 17ECh. 2.5 - In Exercises 11–26, prove each of the given...Ch. 2.5 - Prob. 19ECh. 2.5 - Prob. 20ECh. 2.5 - Prob. 21ECh. 2.5 - Prob. 22ECh. 2.5 - Prob. 23ECh. 2.5 - Prob. 24ECh. 2.5 - Prob. 25ECh. 2.5 - Prob. 26ECh. 2.5 - A sequence s0, s1, s2,… is called a geometric...Ch. 2.5 - A sequence, s0, s1, s2,… is called an arithmetic...Ch. 2.6 - Prob. 1ECh. 2.6 - Prob. 2ECh. 2.6 - Prob. 3ECh. 2.6 - Evaluate the numbers in Exercises 1–12.
4. C(12,...Ch. 2.6 - Evaluate the numbers in Exercises 1–12.
5. C(11,...Ch. 2.6 - Prob. 6ECh. 2.6 - Prob. 7ECh. 2.6 - Evaluate the numbers in Exercises 1–12.
8. C(13,...Ch. 2.6 - Evaluate the numbers in Exercises 1–12.
9. C(n,...Ch. 2.6 - Prob. 10ECh. 2.6 - Prob. 11ECh. 2.6 - Evaluate the numbers in Exercises 1–12.
12.
Ch. 2.6 - Prob. 13ECh. 2.6 - How many nonempty subsets of the set {a, e, i, o,...Ch. 2.6 - At Avanti’s, a pizza can be ordered with any...Ch. 2.6 - If a test consists of 12 questions to be answered...Ch. 2.6 - Prob. 17ECh. 2.6 - Jennifer’s grandmother has told her that she can...Ch. 2.6 - Prob. 19ECh. 2.6 - Prob. 20ECh. 2.6 - Prob. 21ECh. 2.6 - Prob. 22ECh. 2.6 - Prob. 23ECh. 2.6 - Prob. 24ECh. 2.6 - Prob. 25ECh. 2.6 - Prob. 26ECh. 2.6 - Prob. 27ECh. 2.6 - Prob. 28ECh. 2.6 - Prove each of the statements in Exercises 29–40 by...Ch. 2.6 - Prob. 30ECh. 2.6 - Prob. 31ECh. 2.6 - Prove each of the statements in Exercises 29–40 by...Ch. 2.6 - Prob. 33ECh. 2.6 - Prove each of the statements in Exercises 29–40 by...Ch. 2.6 - Prob. 35ECh. 2.6 - Prob. 36ECh. 2 - Prob. 1SECh. 2 - Prob. 2SECh. 2 - Prob. 3SECh. 2 - Prob. 4SECh. 2 - Prob. 5SECh. 2 - Prob. 6SECh. 2 - Prob. 7SECh. 2 - Prob. 8SECh. 2 - Prob. 9SECh. 2 - Draw Venn diagrams depicting the sets in Exercises...Ch. 2 - Prob. 11SECh. 2 - Prob. 12SECh. 2 - Prob. 13SECh. 2 - Prob. 14SECh. 2 - Prob. 15SECh. 2 - Prob. 16SECh. 2 - Prob. 17SECh. 2 - Prob. 18SECh. 2 - Prob. 19SECh. 2 - Prob. 20SECh. 2 - Prob. 21SECh. 2 - Prob. 22SECh. 2 - Prob. 23SECh. 2 - Prob. 24SECh. 2 - Prob. 25SECh. 2 - Prob. 26SECh. 2 - Prob. 27SECh. 2 - Prob. 28SECh. 2 - Prob. 29SECh. 2 - Prob. 30SECh. 2 - Prob. 31SECh. 2 - Prob. 32SECh. 2 - Prob. 33SECh. 2 - Prob. 34SECh. 2 - Prob. 35SECh. 2 - How many equivalence relations on S = {a, b, c}...Ch. 2 - Prob. 37SECh. 2 - Prob. 38SECh. 2 - Prob. 39SECh. 2 - Prob. 40SECh. 2 - Prob. 41SECh. 2 - Prob. 42SECh. 2 - Prob. 43SECh. 2 - Prob. 44SECh. 2 - Prob. 45SECh. 2 - Prob. 46SECh. 2 - Prob. 47SECh. 2 - Prob. 49SECh. 2 - Prob. 50SECh. 2 - Prob. 51SECh. 2 - Prob. 52SECh. 2 - Prob. 53SECh. 2 - Prob. 54SECh. 2 - Prob. 55SECh. 2 - Prob. 56SECh. 2 - Prob. 57SECh. 2 - Prob. 58SECh. 2 - Prob. 59SECh. 2 - Prob. 60SECh. 2 - Prob. 61SECh. 2 - Prob. 62SECh. 2 - Prob. 63SECh. 2 - Prob. 64SECh. 2 - Prove the results in Exercises 63–72 by...Ch. 2 - Prob. 66SECh. 2 - Prob. 67SECh. 2 - Prob. 68SECh. 2 - Prob. 69SECh. 2 - Prob. 70SECh. 2 - Prob. 71SECh. 2 - Prob. 72SECh. 2 - Prob. 1CPCh. 2 - Prob. 6CPCh. 2 - Prob. 7CPCh. 2 - Prob. 12CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- Proof: LN⎯⎯⎯⎯⎯LN¯ divides quadrilateral KLMN into two triangles. The sum of the angle measures in each triangle is ˚, so the sum of the angle measures for both triangles is ˚. So, m∠K+m∠L+m∠M+m∠N=m∠K+m∠L+m∠M+m∠N=˚. Because ∠K≅∠M∠K≅∠M and ∠N≅∠L, m∠K=m∠M∠N≅∠L, m∠K=m∠M and m∠N=m∠Lm∠N=m∠L by the definition of congruence. By the Substitution Property of Equality, m∠K+m∠L+m∠K+m∠L=m∠K+m∠L+m∠K+m∠L=°,°, so (m∠K)+ m∠K+ (m∠L)= m∠L= ˚. Dividing each side by gives m∠K+m∠L=m∠K+m∠L= °.°. The consecutive angles are supplementary, so KN⎯⎯⎯⎯⎯⎯∥LM⎯⎯⎯⎯⎯⎯KN¯∥LM¯ by the Converse of the Consecutive Interior Angles Theorem. Likewise, (m∠K)+m∠K+ (m∠N)=m∠N= ˚, or m∠K+m∠N=m∠K+m∠N= ˚. So these consecutive angles are supplementary and KL⎯⎯⎯⎯⎯∥NM⎯⎯⎯⎯⎯⎯KL¯∥NM¯ by the Converse of the Consecutive Interior Angles Theorem. Opposite sides are parallel, so quadrilateral KLMN is a parallelogram.arrow_forwardBy considering appropriate series expansions, ex · ex²/2 . ¸²³/³ . . .. = = 1 + x + x² +…… when |x| < 1. By expanding each individual exponential term on the left-hand side and multiplying out, show that the coefficient of x 19 has the form 1/19!+1/19+r/s, where 19 does not divide s.arrow_forwardLet 1 1 r 1+ + + 2 3 + = 823 823s Without calculating the left-hand side, prove that r = s (mod 823³).arrow_forward
- For each real-valued nonprincipal character X mod 16, verify that L(1,x) 0.arrow_forward*Construct a table of values for all the nonprincipal Dirichlet characters mod 16. Verify from your table that Σ x(3)=0 and Χ mod 16 Σ χ(11) = 0. x mod 16arrow_forwardFor each real-valued nonprincipal character x mod 16, verify that A(225) > 1. (Recall that A(n) = Σx(d).) d\narrow_forward
- 24. Prove the following multiplicative property of the gcd: a k b h (ah, bk) = (a, b)(h, k)| \(a, b)' (h, k) \(a, b)' (h, k) In particular this shows that (ah, bk) = (a, k)(b, h) whenever (a, b) = (h, k) = 1.arrow_forward20. Let d = (826, 1890). Use the Euclidean algorithm to compute d, then express d as a linear combination of 826 and 1890.arrow_forwardLet 1 1+ + + + 2 3 1 r 823 823s Without calculating the left-hand side, Find one solution of the polynomial congruence 3x²+2x+100 = 0 (mod 343). Ts (mod 8233).arrow_forward
- By considering appropriate series expansions, prove that ez · e²²/2 . e²³/3 . ... = 1 + x + x² + · ·. when <1.arrow_forwardProve that Σ prime p≤x p=3 (mod 10) 1 Р = for some constant A. log log x + A+O 1 log x ,arrow_forwardLet Σ 1 and g(x) = Σ logp. f(x) = prime p≤x p=3 (mod 10) prime p≤x p=3 (mod 10) g(x) = f(x) logx - Ր _☑ t¯¹ƒ(t) dt. Assuming that f(x) ~ 1½π(x), prove that g(x) ~ 1x. 米 (You may assume the Prime Number Theorem: 7(x) ~ x/log x.) *arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Discrete Mathematics and Its Applications ( 8th I...MathISBN:9781259676512Author:Kenneth H RosenPublisher:McGraw-Hill EducationMathematics for Elementary Teachers with Activiti...MathISBN:9780134392790Author:Beckmann, SybillaPublisher:PEARSON
- Thinking Mathematically (7th Edition)MathISBN:9780134683713Author:Robert F. BlitzerPublisher:PEARSONDiscrete Mathematics With ApplicationsMathISBN:9781337694193Author:EPP, Susanna S.Publisher:Cengage Learning,Pathways To Math Literacy (looseleaf)MathISBN:9781259985607Author:David Sobecki Professor, Brian A. MercerPublisher:McGraw-Hill Education
Discrete Mathematics and Its Applications ( 8th I...
Math
ISBN:9781259676512
Author:Kenneth H Rosen
Publisher:McGraw-Hill Education
Mathematics for Elementary Teachers with Activiti...
Math
ISBN:9780134392790
Author:Beckmann, Sybilla
Publisher:PEARSON
Thinking Mathematically (7th Edition)
Math
ISBN:9780134683713
Author:Robert F. Blitzer
Publisher:PEARSON
Discrete Mathematics With Applications
Math
ISBN:9781337694193
Author:EPP, Susanna S.
Publisher:Cengage Learning,
Pathways To Math Literacy (looseleaf)
Math
ISBN:9781259985607
Author:David Sobecki Professor, Brian A. Mercer
Publisher:McGraw-Hill Education