INTRO TO GEN ANALYSIS W/ACHIEVE ACCESS
12th Edition
ISBN: 9781319423865
Author: Griffiths
Publisher: MAC HIGHER
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 2, Problem 88P
Summary Introduction
To determine: The genetic explanation of the results that were obtained from the two different crosses.
Introduction: There are different cross based on the number of characters taken into consideration. The cross in which only a single character is taken is termed as a monohybrid cross, whereas the dihybrid cross is considered where two characters are taken into account.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Multiple crosses were made between true-breeding lines of black and yellow Labrador retrievers. All the F1 progeny were yellow. When these progeny were intercrossed, they produced an F2 consisting of 121 yellow, 9 black and 30 chocolate.
What epistatic ratio and what kind of epistasis is approximated in the F2?
Propose a biochemical pathway for coat color in Labrador retrievers based on the type of epistasis.
Correlate each genotype with the phenotype that would occur in your pathway. Also show the frequency of each genotype.
A-B-
A-bb aaB- aabb
In an intra-species cross performed in mustard plants of two different species (Brassica juncea and Brassica oleracea), a tall plant (TT) was crossed with a dwarf (tt) variety in each of the two species. The members of the F1 generation were crossed to produce the F2 generation. Of the F2 plants, Brassica juncea had 60 tall and 20 dwarf plants, while Brassica oleracea had 100 tall and 20 dwarf plants. Use chi-square analysis to analyze these results.
In the fungus Neurospora, a strain that is auxotrophic for thiamine (mutant allele t) was crossed with a strain that isauxotrophic for methionine (mutant allele m). Linear asci were isolated and classified into the following groups: a. Determine the linkage relations of these two genes to their centromere(s) and to each other. Specify distances in map units. b. Draw a diagram to show the origin of the ascus type with only one single representative (second from right).
Chapter 2 Solutions
INTRO TO GEN ANALYSIS W/ACHIEVE ACCESS
Ch. 2 - Prob. 1PCh. 2 - Prob. 2PCh. 2 - Prob. 3PCh. 2 - Prob. 4PCh. 2 - Prob. 5PCh. 2 - Prob. 6PCh. 2 - Prob. 7PCh. 2 - Prob. 8PCh. 2 - Prob. 9PCh. 2 - Prob. 10P
Ch. 2 - Prob. 11PCh. 2 - Prob. 12PCh. 2 - Prob. 13PCh. 2 - Prob. 14PCh. 2 - Prob. 15PCh. 2 - Prob. 17PCh. 2 - Prob. 18PCh. 2 - Prob. 19PCh. 2 - Prob. 20PCh. 2 - Prob. 21PCh. 2 - Prob. 22PCh. 2 - Prob. 23PCh. 2 - Prob. 24PCh. 2 - Prob. 25PCh. 2 - Prob. 26PCh. 2 - Prob. 27PCh. 2 - Prob. 28PCh. 2 - Prob. 29PCh. 2 - Prob. 30PCh. 2 - Prob. 31PCh. 2 - Prob. 32PCh. 2 - Prob. 33PCh. 2 - Prob. 34PCh. 2 - Prob. 35PCh. 2 - Prob. 36PCh. 2 - Prob. 37PCh. 2 - Prob. 38PCh. 2 - Prob. 39PCh. 2 - Prob. 40PCh. 2 - Prob. 41PCh. 2 - Prob. 42PCh. 2 - Prob. 43PCh. 2 - Prob. 44PCh. 2 - Prob. 45PCh. 2 - Prob. 46PCh. 2 - Prob. 47PCh. 2 - Prob. 48PCh. 2 - Prob. 49PCh. 2 - Prob. 50PCh. 2 - Prob. 51PCh. 2 - Prob. 52PCh. 2 - Prob. 53PCh. 2 - Prob. 54PCh. 2 - Prob. 55PCh. 2 - Prob. 56PCh. 2 - Prob. 56.1PCh. 2 - Prob. 56.2PCh. 2 - Prob. 56.3PCh. 2 - Prob. 56.4PCh. 2 - Prob. 56.5PCh. 2 - Prob. 56.6PCh. 2 - Prob. 56.7PCh. 2 - Prob. 56.8PCh. 2 - Prob. 56.9PCh. 2 - Prob. 56.10PCh. 2 - Prob. 56.11PCh. 2 - Prob. 56.12PCh. 2 - Prob. 56.13PCh. 2 - Prob. 56.14PCh. 2 - Prob. 56.15PCh. 2 - Prob. 57PCh. 2 - Prob. 58PCh. 2 - Prob. 59PCh. 2 - Prob. 60PCh. 2 - Prob. 61PCh. 2 - Prob. 62PCh. 2 - Prob. 63PCh. 2 - Prob. 64PCh. 2 - Prob. 65PCh. 2 - Prob. 67PCh. 2 - Prob. 68PCh. 2 - Prob. 69PCh. 2 - Prob. 70PCh. 2 - Prob. 71PCh. 2 - Prob. 72PCh. 2 - Prob. 73PCh. 2 - Prob. 74PCh. 2 - Prob. 75PCh. 2 - Prob. 76PCh. 2 - Prob. 77PCh. 2 - Prob. 78PCh. 2 - Prob. 79PCh. 2 - Prob. 80PCh. 2 - Prob. 81PCh. 2 - Prob. 82PCh. 2 - Prob. 83PCh. 2 - Prob. 84PCh. 2 - Prob. 85PCh. 2 - Prob. 86PCh. 2 - Prob. 87PCh. 2 - Prob. 88PCh. 2 - Prob. 89PCh. 2 - Prob. 90PCh. 2 - Prob. 91PCh. 2 - Prob. 1GSCh. 2 - Prob. 2GSCh. 2 - Prob. 3GS
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, biology and related others by exploring similar questions and additional content below.Similar questions
- Two groups of geneticists, in California and in Chile, begin work to develop a linkage map of the medfly. They both independently find that the loci for body color (B = black, b = gray) and eye shape (R = round, r = star) are linked 28 m.u. apart. They send strains to each other and perform crosses; a summary of all their findings is shown here:a. Provide a genetic hypothesis that explains the three sets of testcross results. b. Draw the key chromosomal features of meiosis in the F1 from a cross of the Californian and Chilean lines.arrow_forwardConsider three genes L, U, and W, for which the count of F2 phenotypes after a 3-point cross is as follows: Phenotype F2 count: L U w 19 L u W 1 l u W 21 L U W 33 l U W 274 l u w 41 l U w 2 L u w 259 Which of the following statements about genes L, U, and W are TRUE? (may be more than one correct ans) A. L, U, and W are each on a different chromosome B. Only U and L are on the same chromosome C. Only U and W are on the same chromosome D. Only W and L are on the same chromosome E. L, U, and W are all on the same chromosomearrow_forwardIn a cross in Drosophila, a female heterozygous for the autosomallylinked genes a, b, c, d, and e (abcde/ + + + + +) was testcrossedwith a male homozygous for all recessive alleles (abcde/abcde).Even though the distance between each of the loci was at least3 map units, only four phenotypes were recovered, yielding thefollowing data: Phenotype No. of Flies+ + + + + 440a b c d e 460+ + + + e 48a b c d + 52 Total = 1000 Why are many expected crossover phenotypes missing? Can anyof these loci be mapped from the data given here? If so, determinemap distances.arrow_forward
- The wild-type (normal) fruit fly, Drosophila melanogaster, has straight wings and long bristles. Mutant strains have been isolated that have either curled wings or short bristles. The genes representing these two mutant traits are located on separate chromosomes. Carefully examine the data from the following five crosses shown below (running across both columns). (a) Identify each mutation as either dominant or recessive. In each case, indicate which crosses support your answer. (b) Assign gene symbols and, for each cross, determine the genotypes of the parents.arrow_forwardFemales of wild-type Strain A and males of mutant Strain B, as well as females of mutant Strain B and males of wild-type Strain A, make reciprocal crosses. Explain why reciprocal crosses are needed in genetics experiments involving Drosophila fruit flies.arrow_forwardThree autosomal recessive mutations in yeast, all producing the same phenotype (m1, m2, and m3), are subjected to complementation analysis. Of the results shown below, which, if any, are alleles of one another? Predict the results of the cross that is not shown—that is, m2 * m3. Cross 1: m1 * m24 F1: all wild-type progeny Cross 2: m1 * m34 F1: all mutant progenyarrow_forward
- In sweet peas, gene C or P alone produces white flowers, the purple colour being due to the presence of both these factors. What will be the flower colour of the offsprings of the following crosses, in which genotypes of parents are given;a) A white flowered plant crossed with a purple produces offspring, of which three-eighth are purple and five-eighth white.arrow_forwardConsider the first category of test-cross offspring shown in figure 8.2 (+b, LS). Consider also that the parents of the heterozygous female flies in the test cross had the following genotypes: bb, SS, and +, LL. A. What would be the physical phenotype of these flies? B. If PC was conducted with the DNA of one of these flies using the primers for the molecular marker, what would be the appearance of the bands on an electrophoresis gel with the PC products? C. If the gene for black body and the locus for the molecular marker (L long or S short) were unlinked, what proportion of the test-cross progeny would be black flies that are heterozygous for the molecular marker? What proportion would be flies with normal body color, which are homozygous for one form of the molecular marker? D. If the gene for black body and the locus for the molecular marker were linked, how would the proportion of flies be different?arrow_forwardThe allele G for yellow stigma is completely dominant to green (g). Supposing two strains of autotetraploid plants are available and their genotypes are as follows: GGgg – in this plant the gene is close to the centromere Gggg – in this plant the gene is far from the centromere If these two plants are crossed: a) provide the gametes that can be obtained from the two plants; b) provide the genotypic and phenotypic ratios of the offspring.arrow_forward
- A pure breeding strain of squash that produced disk-shaped fruits was crossed with a pure- breeding strain having long fruits. The first filial generation had disk fruits, but the second filial generation showed a new phenotype, sphere, and was composed of the following proportions: disk 270, sphere 178, long 32. Propose an explanation for these results, and show the genotypes of P, First filial generation and second filial generation.arrow_forwardCross 1 AaBb x AaBb Cross 2 AaBbCc x AaBbCc a) Please use a branching diagram to find the genotypic ratios of the offspring of cross 1 illustrated above and complete with the resulting genotypes and ratios. How many different genotypes are there in the offspring of this cross? [ ] Genotype ratios for the offspring of Cross 1 (please indicate both the ratio and the genotype for each one: e.g.: 3AABB:1aabb, etc): [ ] b) Please use a branching diagram to find the phenotypic ratios of the offspring of cross 2 and complete below the resulting phenotypes and ratios. How many different phenotypes are in the offspring of this cross [ ] Phenotype ratios for the offspring of Cross 2 (please indicate both the ratio and the phenotype for each one using D and R for dominant and recessive phenotypes respectively, for example 1DDD:2DRR, etc.): [ ] c) What mathematical operation are you using to calculate the ratios for multiple genes and what…arrow_forward1)se; 12 cM 2)h; 12 cM 3)g; 8 cM 4)se; 8 cMarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Human Anatomy & Physiology (11th Edition)BiologyISBN:9780134580999Author:Elaine N. Marieb, Katja N. HoehnPublisher:PEARSONBiology 2eBiologyISBN:9781947172517Author:Matthew Douglas, Jung Choi, Mary Ann ClarkPublisher:OpenStaxAnatomy & PhysiologyBiologyISBN:9781259398629Author:McKinley, Michael P., O'loughlin, Valerie Dean, Bidle, Theresa StouterPublisher:Mcgraw Hill Education,
- Molecular Biology of the Cell (Sixth Edition)BiologyISBN:9780815344322Author:Bruce Alberts, Alexander D. Johnson, Julian Lewis, David Morgan, Martin Raff, Keith Roberts, Peter WalterPublisher:W. W. Norton & CompanyLaboratory Manual For Human Anatomy & PhysiologyBiologyISBN:9781260159363Author:Martin, Terry R., Prentice-craver, CynthiaPublisher:McGraw-Hill Publishing Co.Inquiry Into Life (16th Edition)BiologyISBN:9781260231700Author:Sylvia S. Mader, Michael WindelspechtPublisher:McGraw Hill Education
Human Anatomy & Physiology (11th Edition)
Biology
ISBN:9780134580999
Author:Elaine N. Marieb, Katja N. Hoehn
Publisher:PEARSON
Biology 2e
Biology
ISBN:9781947172517
Author:Matthew Douglas, Jung Choi, Mary Ann Clark
Publisher:OpenStax
Anatomy & Physiology
Biology
ISBN:9781259398629
Author:McKinley, Michael P., O'loughlin, Valerie Dean, Bidle, Theresa Stouter
Publisher:Mcgraw Hill Education,
Molecular Biology of the Cell (Sixth Edition)
Biology
ISBN:9780815344322
Author:Bruce Alberts, Alexander D. Johnson, Julian Lewis, David Morgan, Martin Raff, Keith Roberts, Peter Walter
Publisher:W. W. Norton & Company
Laboratory Manual For Human Anatomy & Physiology
Biology
ISBN:9781260159363
Author:Martin, Terry R., Prentice-craver, Cynthia
Publisher:McGraw-Hill Publishing Co.
Inquiry Into Life (16th Edition)
Biology
ISBN:9781260231700
Author:Sylvia S. Mader, Michael Windelspecht
Publisher:McGraw Hill Education
How to solve genetics probability problems; Author: Shomu's Biology;https://www.youtube.com/watch?v=R0yjfb1ooUs;License: Standard YouTube License, CC-BY
Beyond Mendelian Genetics: Complex Patterns of Inheritance; Author: Professor Dave Explains;https://www.youtube.com/watch?v=-EmvmBuK-B8;License: Standard YouTube License, CC-BY