Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 2, Problem 82P
Figure 2-44 gives the acceleration a versus time t for a particle moving along an x axis. The a-axis scale is set by as = 12.0 m/s2. At t =−2.0 s, the particle’s velocity is 7.0 m/s. What is its velocity at t =6.0 s?
Figure 2-44 Problem 82.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The acceleration of a particle as it moves
along a straight line is given by a = (2t -
1)m/s^2, where t is in seconds. If s = 1m and
V =
2m/s when t = 0, determine the
particle's velocity and position when t = 6s.
Also, determine the total distance the
particle travels during this time period.
The velocity of a particle is given by v = 23t2 - 110t + 52, where v is in meters per second and t is in seconds. Plot the velocity v and
acceleration a versus time for the first 6.4 seconds of motion and evaluate the velocity when a is zero. Make the plots and then
answer the questions.
Questions:
When t = 0.8 s,
V =
i
m/s,
a =
i
m/s2
When t = 3.7 s,
V =
i
m/s,
a =
i
m/s?
When t = 4.7 s,
V =
i
m/s,
a =
i
m/s?
When a = 0,
V =
m/s
The acceleration of a particle moving along a straight line is a = (11 - 1.0s) m/s², where s is in meters. If v = 0 when s = 0, determine the magnitude of the particle's velocity when s = 7.0 m.
Chapter 2 Solutions
Fundamentals of Physics Extended
Ch. 2 - Figure 2-16 gives the velocity of a particle...Ch. 2 - Figure 2-17 gives the acceleration at of a...Ch. 2 - Figure 2-18 shows four paths along which objects...Ch. 2 - Figure 2-19 is a graph of a particles position...Ch. 2 - Figure 2-20 gives the velocity of a particle...Ch. 2 - At t = 0, a particle moving along an x axis is at...Ch. 2 - Hanging over the railing of a bridge, you drop an...Ch. 2 - The following equations give the velocity vt of a...Ch. 2 - In Fig. 2-22, a cream tangerine is thrown directly...Ch. 2 - Suppose that a passenger intent on lunch during...
Ch. 2 - Figure 2-23 shows that a particle moving along an...Ch. 2 - While driving a car at 90 km/h, how far do you...Ch. 2 - Compute your average velocity in the following two...Ch. 2 - SSM WWW An automobile travels on a straight road...Ch. 2 - A car moves uphill at 40 km/h and then back...Ch. 2 - SSM The position of an object moving along an x...Ch. 2 - The 1992 world speed record for a bicycle...Ch. 2 - Two trains, each having a speed of 30 km/h, are...Ch. 2 - GO Panic escape. Figure 2-24 shows a general...Ch. 2 - ILW In 1 km races, runner 1 on track 1with time 2...Ch. 2 - To set a speed record in a measured straight-line...Ch. 2 - GO You are to drive 300 km to an interview. The...Ch. 2 - Traffic shock wave. An abrupt slowdown in...Ch. 2 - ILW You drive on Interstate 10 from San Antonio to...Ch. 2 - GO An electron moving along the x axis has a...Ch. 2 - GO a If a particles position is given by x = 4 ...Ch. 2 - The position function xt of a particle moving...Ch. 2 - The position of a particle moving along the x axis...Ch. 2 - The position of a particle moving along an x axis...Ch. 2 - SSM At a certain time a particle had a speed of 18...Ch. 2 - a If the position of a particle is given by x =...Ch. 2 - From t = 0 to t = 5.00 min, a man stands still,...Ch. 2 - The position of a particle moving along the x axis...Ch. 2 - SSM An electron with an initial velocity v0 = 1.50...Ch. 2 - Catapulting mushrooms. Certain mushrooms launch...Ch. 2 - An electric vehicle starts from rest and...Ch. 2 - A muon an elementary particle enters a region with...Ch. 2 - An electron has a constant acceleration of 3.2...Ch. 2 - On a dry road, a car with good tires may be able...Ch. 2 - ILW A certain elevator cab has a total run of 190...Ch. 2 - The brakes on your car can slow you at a rate of...Ch. 2 - SSM Suppose a rocket ship in deep space moves with...Ch. 2 - A worlds land speed record was set by Colonel...Ch. 2 - SSM ILW A car traveling 56.0 km/h is 24.0 m from a...Ch. 2 - GO In Fig. 2-27, a red car and a green car,...Ch. 2 - Figure 2-27 shows a red car and a green car that...Ch. 2 - A car moves along an x axis through a distance of...Ch. 2 - Figure 2-29 depicts the motion of a particle...Ch. 2 - a If the maximum acceleration that is tolerable...Ch. 2 - Cars A and B move in the same direction in...Ch. 2 - You are driving toward a traffic signal when it...Ch. 2 - GO As two trains move along a track, their...Ch. 2 - GO You are arguing over a cell phone while...Ch. 2 - GO When a high-speed passenger train traveling at...Ch. 2 - When startled, an armadillo will leap upward....Ch. 2 - SSM WWWa With what speed must a ball be thrown...Ch. 2 - Raindrops fall 1700 m from a cloud to the ground....Ch. 2 - SSMAt a construction site a pipe wrench struck the...Ch. 2 - A hoodlum throws a stone vertically downward with...Ch. 2 - SSM A hot-air balloon is ascending at the rate of...Ch. 2 - At time t = 0, apple 1 is dropped from a bridge...Ch. 2 - As a runaway scientific balloon ascends at 19.6...Ch. 2 - GO A bolt is dropped from a bridge under...Ch. 2 - SSM ILW A key falls from a bridge that is 45 m...Ch. 2 - GO A stone is dropped into a river from a bridge...Ch. 2 - SSM A ball of moist clay falls 15.0 m to the...Ch. 2 - GO Figure 2-35 shows the speed v versus height y...Ch. 2 - To test the quality of a tennis ball, you drop it...Ch. 2 - An object falls a distance h from rest. If it...Ch. 2 - Water drips from the nozzle of a shower onto the...Ch. 2 - GO A rock is thrown vertically upward from ground...Ch. 2 - GO A steel ball is dropped from a buildings roof...Ch. 2 - A basketball player grabbing a rebound jumps76.0...Ch. 2 - GO A drowsy cat spots a flowerpot that sails first...Ch. 2 - A ball is shot vertically upward from the surface...Ch. 2 - Figure 2-15a gives the acceleration of a...Ch. 2 - In a forward punch in karate, the fist begins at...Ch. 2 - When a soccer ball is kicked toward a player and...Ch. 2 - A salamander of the genus Hydromantes capturesprey...Ch. 2 - ILW How far does the runner whose velocitytime...Ch. 2 - Two particles move along an x axis. The position...Ch. 2 - In an arcade video game, a spot is programmed to...Ch. 2 - A rock is shot vertically upward from the edge of...Ch. 2 - GO At the instant the traffic light turns green,...Ch. 2 - A pilot flies horizontally at 1300 km/h, at height...Ch. 2 - GO To stop a car, first you require a certain...Ch. 2 - GO Figure 2-42 shows part of a street where...Ch. 2 - SSM A hot rod can accelerate from 0 to 60 km/h in...Ch. 2 - GO A red train traveling at 72 km/h and a green...Ch. 2 - GO At time t = 0, a rock climber accidentally...Ch. 2 - A train started from rest and moved with constant...Ch. 2 - SSM A particles acceleration along an x axis is a...Ch. 2 - Figure 2-44 gives the acceleration a versus time t...Ch. 2 - Figure 2-45 shows a simple device for measuring...Ch. 2 - A rocket-driven sled running on a straight, level...Ch. 2 - A mining cart is pulled up a hill at 20 km/h and...Ch. 2 - A motorcyclist who is moving along an x axis...Ch. 2 - SSM When the legal speed limit for the New York...Ch. 2 - A car moving with constant acceleration covered...Ch. 2 - SSM A certain juggler usually tosses balls...Ch. 2 - A particle starts from the origin at t = 0 and...Ch. 2 - A rock is dropped from a 100-m-high cliff. How...Ch. 2 - Two subway stops are separated by 1100 m. If a...Ch. 2 - A stone is thrown vertically upward. On its way up...Ch. 2 - A rock is dropped from rest from the top of a...Ch. 2 - SSM An iceboat has a constant velocity toward the...Ch. 2 - A lead ball is dropped in a lake from a diving...Ch. 2 - The single cable supporting an unoccupied...Ch. 2 - Two diamonds begin a free fall from rest from the...Ch. 2 - A ball is thrown vertically downward from the top...Ch. 2 - A parachutist bails out and freely falls 50 m....Ch. 2 - A ball is thrown down vertically with an initial...Ch. 2 - The sport with the fastest moving ball is jai...Ch. 2 - If a baseball pitcher throws a fastball at a...Ch. 2 - A proton moves along the x axis according to the...Ch. 2 - A motorcycle is moving at 30 m/s when the rider...Ch. 2 - A shuffleboard disk is accelerated at a constant...Ch. 2 - The head of a rattlesnake can accelerate at 50...Ch. 2 - A jumbo jet must reach a speed of 360 km/h on the...Ch. 2 - An automobile driver increases the speed at a...Ch. 2 - On average, an eye blink lasts about 100 ms. How...Ch. 2 - A certain sprinter has a top speed of 11.0 m/s. If...Ch. 2 - The speed of a bullet is measured to be 640 m/s as...Ch. 2 - The Zero Gravity Research Facility at the NASA...Ch. 2 - A car can be braked to a stop from the...Ch. 2 - In 1889, at Jubbulpore, India, a tug-of-war was...Ch. 2 - Most important in an investigation of an airplane...Ch. 2 - From January 26, 1977, to September 18, 1983,...Ch. 2 - The wings on a stonefly do not flap, and thus the...Ch. 2 - The position of a particle as it moves along a y...
Additional Science Textbook Solutions
Find more solutions based on key concepts
5.The precise mechanism of ammonia toxicity to the brain is not known. Speculate on a possible mechanism, based...
Biochemistry: Concepts and Connections (2nd Edition)
64. Determine the [H3O+] and pH of a 0.200 M solution of formic acid.
Chemistry: A Molecular Approach (4th Edition)
Distinguish between microevolution, speciation, and macroevolution.
Campbell Essential Biology (7th Edition)
2. Whether an allele is dominant or recessive depends on
a. how common the allele is, relative to other alleles...
Campbell Biology: Concepts & Connections (9th Edition)
Define histology.
Fundamentals of Anatomy & Physiology (11th Edition)
Describe an example of bioconversion. What metabolic processes can result in fuels?
Microbiology: An Introduction
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- At time t=0.0s a particle is located at x = 4.0 m and y = 1.0 m. The particle has an initial velocity at t=0.0 s given by: v=6.0m/si-2.0m/sj The particle experiences a constant acceleration beginning at t=0.0s that can be described by a = -2.0m/s² i +5.0m/s23 +3.0m/s² k (A) On coordinate axes (x and y) show the particle initial position and draw a vector which indicates the initial velocity of the particle. (B) If we want to determine the position of the particle at a later time t, which physics approach or equation(s) might we use to do so? (C) Find the position of the particle at t=4.0 s. Express your result in terms of the position vector in and j and k notation.arrow_forwardA particle at t₁ = -2.0 s is at x₁ = 4.3 cm and at t₂ = 4.5 s is at x₂ = 8.5 cm. What is its average velocity? Can you calculate its average speed from these data?arrow_forwardThe position of a particle is given by r(t) = (3.0 t2 ˆi+ 5.0 ˆj − 6.0 t ˆk) m. (a) What is its speed at t = 1 s and t = 3 s? (b) What are the average velocity and acceleration between t = 1 s and t = 2 s?arrow_forward
- At a certain time a particle had a velocity of 18 m/s in the positive x-direction, and 2.4 s later its velocity was 30 m/s in the opposite direction. What is the average acceleration of the particle during this 2.4 s interval.arrow_forwardThe graph below shows the position of a particle as a function of time. (a) What is the average speed between t = 2.0 s and t = 10 s? (b) What is the average velocity between t= 2.0 s and t = 10 s? (c) What is the average acceleration between t = 2.0 s and t = 8.0 s? .r (m) 60 40 20 3D t (s) 2 4 6 8 10 12arrow_forwardA particle moving in 1D has time-dependent velocity which is given by the quadratic function v(t) = At2 + Bt + C, where A = 4.5 m/s3, B = 3.6 m/s2, and C = −1.7 m/s. a) Find the average acceleration of the particle between t = 0 s and 2.5 s. b) Find the average acceleration of the particle between t = 2.5 s and 5.0 s. c) At what time(s) is the particle at rest?arrow_forward
- Position of a particle moving along the x-axis varies in time according to the following expression x(t) = (-2,0 ") e* + (6.0")t- 2 m t +(6.0")t- What is its average velocity for the time interval t = 0.0 s to t = 2.0 s? O -6.0 m/s 4.0 m/s -3.0 m/s O-5.0 m/s O -4.0 m/s O -2.0 m/s -8.0 m/sarrow_forwardThe acceleration of a particle is given by a = 2t - 15, where a is in meters per second squared and t is in seconds. Determine the velocity and displacement as functions of time. The initial displacement at t = 0 is 5o = -6 m, and the initial velocity is vo= 5 m/s. Once you have determined the functions of time, answer the questions. Questions: When t = 4.9 s, S= i V= a= i i m m/s m/s²arrow_forwardThe acceleration of a particle is defined as the relation a = αt-4. Knowing that v = 4m/s when t = 2s and v = -1 m/s when t = 1s, Determine the constant ‘α’. Write the equation of motion when x = 0 at t = 3s.arrow_forward
- (1) 1.24 1.0+ 0.84 0.6+ 0.4+ 0.2+ 0 0.2 0.4 0.6 0.8 1.0 (A) B A particle moves along the x-axis so that its acceleration a (t) is given by the graph above for all values of t where 0 ≤ t ≤ 1. At time t = 0, the velocity of the particle is. Which of the following statements must be true? D BAM! (E The particle passes through x = 0 for some t between t = 0 and t = 1. The velocity of the particle is 0 for some t between t = 0 and t = 1. The velocity of the particle is negative for all values of t between t = 0 and t = 1. The velocity of the particle is positive for all values of t between t = 0 and t = 1. *** The velocity of the particle is less than for all values of tbetween t = 0 and t = 1. Rarrow_forwardA particle travels along a straight-line path such that in 4 s it moves from an initial position sA = -8 m to a position sB = +3 m. Then in another 5 s it moves from sB to sC = -6 m. Determine the particle’s average velocity and average speed during the 9-s time interval.arrow_forwardThe runway of an airport in Oman has been designed such that the lowest acceleration for a plane to take off is 10.3 m/s ^ 2 . The take -off speed for this plane will be 64.2 m/s . Assuming this minimum acceleration , then the minimum allowed length (m) for the runway is :arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Speed Distance Time | Forces & Motion | Physics | FuseSchool; Author: FuseSchool - Global Education;https://www.youtube.com/watch?v=EGqpLug-sDk;License: Standard YouTube License, CC-BY