Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 2, Problem 75P
GO To stop a car, first you require a certain reaction time to begin braking; then the car slows at a constant rate. Suppose that the total distance moved by your car during these two phases is 56.7 m when its initial speed is 80.5 km/h, and 24.4 m when its initial speed is 48.3 km/h. What are (a) your reaction time and (b) the magnitude of the acceleration?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
To stop a car, first you require a certain reaction time to begin braking; then the car slows at a constant rate. Suppose that the total distance moved by your car during these two phases is 56.7 m when its initial speed is 80.5 km/h, and 24.4 m when its initial speed is 48.3 km/h.What are (a) your reaction time and (b) the magnitude of the acceleration?
To stop a car, first you require a certain reaction time to begin braking; then the car slows under the constant braking deceleration. Suppose that the total distance moved by your car during these two phases is 51.8 m when its initial speed is 81.3 km/h, and 20.1 m when its initial speed is 48.8 km/h. What are (a) your reaction time and (b) the magnitude of the deceleration?
A certain aircraft has a liftoff speed of 116 km/h.a) What minimum constant acceleration does the aircraft require if it is to be airborne after a takeoff run of 285 m?b) How much time does it take the aircraft to become airborne?
Chapter 2 Solutions
Fundamentals of Physics Extended
Ch. 2 - Figure 2-16 gives the velocity of a particle...Ch. 2 - Figure 2-17 gives the acceleration at of a...Ch. 2 - Figure 2-18 shows four paths along which objects...Ch. 2 - Figure 2-19 is a graph of a particles position...Ch. 2 - Figure 2-20 gives the velocity of a particle...Ch. 2 - At t = 0, a particle moving along an x axis is at...Ch. 2 - Hanging over the railing of a bridge, you drop an...Ch. 2 - The following equations give the velocity vt of a...Ch. 2 - In Fig. 2-22, a cream tangerine is thrown directly...Ch. 2 - Suppose that a passenger intent on lunch during...
Ch. 2 - Figure 2-23 shows that a particle moving along an...Ch. 2 - While driving a car at 90 km/h, how far do you...Ch. 2 - Compute your average velocity in the following two...Ch. 2 - SSM WWW An automobile travels on a straight road...Ch. 2 - A car moves uphill at 40 km/h and then back...Ch. 2 - SSM The position of an object moving along an x...Ch. 2 - The 1992 world speed record for a bicycle...Ch. 2 - Two trains, each having a speed of 30 km/h, are...Ch. 2 - GO Panic escape. Figure 2-24 shows a general...Ch. 2 - ILW In 1 km races, runner 1 on track 1with time 2...Ch. 2 - To set a speed record in a measured straight-line...Ch. 2 - GO You are to drive 300 km to an interview. The...Ch. 2 - Traffic shock wave. An abrupt slowdown in...Ch. 2 - ILW You drive on Interstate 10 from San Antonio to...Ch. 2 - GO An electron moving along the x axis has a...Ch. 2 - GO a If a particles position is given by x = 4 ...Ch. 2 - The position function xt of a particle moving...Ch. 2 - The position of a particle moving along the x axis...Ch. 2 - The position of a particle moving along an x axis...Ch. 2 - SSM At a certain time a particle had a speed of 18...Ch. 2 - a If the position of a particle is given by x =...Ch. 2 - From t = 0 to t = 5.00 min, a man stands still,...Ch. 2 - The position of a particle moving along the x axis...Ch. 2 - SSM An electron with an initial velocity v0 = 1.50...Ch. 2 - Catapulting mushrooms. Certain mushrooms launch...Ch. 2 - An electric vehicle starts from rest and...Ch. 2 - A muon an elementary particle enters a region with...Ch. 2 - An electron has a constant acceleration of 3.2...Ch. 2 - On a dry road, a car with good tires may be able...Ch. 2 - ILW A certain elevator cab has a total run of 190...Ch. 2 - The brakes on your car can slow you at a rate of...Ch. 2 - SSM Suppose a rocket ship in deep space moves with...Ch. 2 - A worlds land speed record was set by Colonel...Ch. 2 - SSM ILW A car traveling 56.0 km/h is 24.0 m from a...Ch. 2 - GO In Fig. 2-27, a red car and a green car,...Ch. 2 - Figure 2-27 shows a red car and a green car that...Ch. 2 - A car moves along an x axis through a distance of...Ch. 2 - Figure 2-29 depicts the motion of a particle...Ch. 2 - a If the maximum acceleration that is tolerable...Ch. 2 - Cars A and B move in the same direction in...Ch. 2 - You are driving toward a traffic signal when it...Ch. 2 - GO As two trains move along a track, their...Ch. 2 - GO You are arguing over a cell phone while...Ch. 2 - GO When a high-speed passenger train traveling at...Ch. 2 - When startled, an armadillo will leap upward....Ch. 2 - SSM WWWa With what speed must a ball be thrown...Ch. 2 - Raindrops fall 1700 m from a cloud to the ground....Ch. 2 - SSMAt a construction site a pipe wrench struck the...Ch. 2 - A hoodlum throws a stone vertically downward with...Ch. 2 - SSM A hot-air balloon is ascending at the rate of...Ch. 2 - At time t = 0, apple 1 is dropped from a bridge...Ch. 2 - As a runaway scientific balloon ascends at 19.6...Ch. 2 - GO A bolt is dropped from a bridge under...Ch. 2 - SSM ILW A key falls from a bridge that is 45 m...Ch. 2 - GO A stone is dropped into a river from a bridge...Ch. 2 - SSM A ball of moist clay falls 15.0 m to the...Ch. 2 - GO Figure 2-35 shows the speed v versus height y...Ch. 2 - To test the quality of a tennis ball, you drop it...Ch. 2 - An object falls a distance h from rest. If it...Ch. 2 - Water drips from the nozzle of a shower onto the...Ch. 2 - GO A rock is thrown vertically upward from ground...Ch. 2 - GO A steel ball is dropped from a buildings roof...Ch. 2 - A basketball player grabbing a rebound jumps76.0...Ch. 2 - GO A drowsy cat spots a flowerpot that sails first...Ch. 2 - A ball is shot vertically upward from the surface...Ch. 2 - Figure 2-15a gives the acceleration of a...Ch. 2 - In a forward punch in karate, the fist begins at...Ch. 2 - When a soccer ball is kicked toward a player and...Ch. 2 - A salamander of the genus Hydromantes capturesprey...Ch. 2 - ILW How far does the runner whose velocitytime...Ch. 2 - Two particles move along an x axis. The position...Ch. 2 - In an arcade video game, a spot is programmed to...Ch. 2 - A rock is shot vertically upward from the edge of...Ch. 2 - GO At the instant the traffic light turns green,...Ch. 2 - A pilot flies horizontally at 1300 km/h, at height...Ch. 2 - GO To stop a car, first you require a certain...Ch. 2 - GO Figure 2-42 shows part of a street where...Ch. 2 - SSM A hot rod can accelerate from 0 to 60 km/h in...Ch. 2 - GO A red train traveling at 72 km/h and a green...Ch. 2 - GO At time t = 0, a rock climber accidentally...Ch. 2 - A train started from rest and moved with constant...Ch. 2 - SSM A particles acceleration along an x axis is a...Ch. 2 - Figure 2-44 gives the acceleration a versus time t...Ch. 2 - Figure 2-45 shows a simple device for measuring...Ch. 2 - A rocket-driven sled running on a straight, level...Ch. 2 - A mining cart is pulled up a hill at 20 km/h and...Ch. 2 - A motorcyclist who is moving along an x axis...Ch. 2 - SSM When the legal speed limit for the New York...Ch. 2 - A car moving with constant acceleration covered...Ch. 2 - SSM A certain juggler usually tosses balls...Ch. 2 - A particle starts from the origin at t = 0 and...Ch. 2 - A rock is dropped from a 100-m-high cliff. How...Ch. 2 - Two subway stops are separated by 1100 m. If a...Ch. 2 - A stone is thrown vertically upward. On its way up...Ch. 2 - A rock is dropped from rest from the top of a...Ch. 2 - SSM An iceboat has a constant velocity toward the...Ch. 2 - A lead ball is dropped in a lake from a diving...Ch. 2 - The single cable supporting an unoccupied...Ch. 2 - Two diamonds begin a free fall from rest from the...Ch. 2 - A ball is thrown vertically downward from the top...Ch. 2 - A parachutist bails out and freely falls 50 m....Ch. 2 - A ball is thrown down vertically with an initial...Ch. 2 - The sport with the fastest moving ball is jai...Ch. 2 - If a baseball pitcher throws a fastball at a...Ch. 2 - A proton moves along the x axis according to the...Ch. 2 - A motorcycle is moving at 30 m/s when the rider...Ch. 2 - A shuffleboard disk is accelerated at a constant...Ch. 2 - The head of a rattlesnake can accelerate at 50...Ch. 2 - A jumbo jet must reach a speed of 360 km/h on the...Ch. 2 - An automobile driver increases the speed at a...Ch. 2 - On average, an eye blink lasts about 100 ms. How...Ch. 2 - A certain sprinter has a top speed of 11.0 m/s. If...Ch. 2 - The speed of a bullet is measured to be 640 m/s as...Ch. 2 - The Zero Gravity Research Facility at the NASA...Ch. 2 - A car can be braked to a stop from the...Ch. 2 - In 1889, at Jubbulpore, India, a tug-of-war was...Ch. 2 - Most important in an investigation of an airplane...Ch. 2 - From January 26, 1977, to September 18, 1983,...Ch. 2 - The wings on a stonefly do not flap, and thus the...Ch. 2 - The position of a particle as it moves along a y...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Consider two hypothetical recessive autosomal genes a and b, where a heterozygote is testcrossed to a double-ho...
Concepts of Genetics (12th Edition)
Why isn't FeBr3 used as a catalyst in the first step of the synthesis of 1,3,5-tribromobenzene?
Organic Chemistry (8th Edition)
5. The diploid number of the hypothetical animal Geneticus introductus is 2n = 36. Each diploid nucleus contain...
Genetic Analysis: An Integrated Approach (3rd Edition)
Did all the organisms living in or on the environments sampled grow on your nutrient agar? Briefly explain.
Laboratory Experiments in Microbiology (12th Edition) (What's New in Microbiology)
Where are skeletal cartilages located?
Human Anatomy & Physiology (2nd Edition)
5. Distinguish between the anatomical neck and the surgical neck of the humerus. Name the proximal and distal p...
Principles of Anatomy and Physiology
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A) You are driving at a constant velocity of magnitude v0 when you notice a garbagecan on the road in front of you. At that moment, the distance between the garbage can and thefront of the car is d. A time t after noticing the garbage can, you apply the brakes and slow downat a constant rate before coming to a halt just before the garbage can. B) Find the magnitude of ax, the acceleration of the car after the brakes are applied, in terms ofthe variables d, t, and v0 You should have found in part B. that ax = v20C) 2(d−v0t). Based on this expression, what happensto ax if t increases and all the other variables remain constant?i) decreases because it is inversely proportional to a linear function of t that increases as t increases.ii) increases because it is inversely proportional to a linear function of t that increases as t increases.iii) increases because it is a linear function of t.iv) decreases because it is inversely proportional to a linear function of t that decreases as t…arrow_forwardPls asaparrow_forwardYou drop an object from rest (initial velocity = 0) from a height of 6.8 metres. What is the final speed of the object as it hits the floor? (Speed is a magnitude and so must be a positive value). Assume the magnitude of the acceleration due to gravity g = 9.8 m/s2. Give your answer to 2 s.f.arrow_forward
- Driving down the road at a speed of 30.1 m/s, you suddenly notice a fallen tree blocking the road a distance of 78.5m ahead of you. You step on the brake pedal and decelerate at a constant rate. What must the magnitude of your acceleration be so that you will come to a stop 7.1 m in front of the tree?arrow_forwardThe driver of a car traveling on the highway suddenly slams on the brakes because of a slowdown in traffic ahead. a) If the car’s speed decreases at a constant rate from 75 mi/hmi/h to 40 mi/hmi/h in 3.0 ss, what is the magnitude of its acceleration, assuming that it continues to move in a straight line? b) What distance does the car travel during the braking period?arrow_forwardThe human body can survive an acceleration trauma incident (sudden stop) if the magnitude of the acceleration is less than 268 m/s2. If you are in an automobile accident with an initial speed of 116 km/h, and you are stopped by an airbag that inflates from the dashboard, over what distance (in meters) must the airbag stop you for you to survive the crash?arrow_forward
- a car traveling at a constant speed of 30.0m / s as it passes a stationary police car. If the police car takes 1.00s to start, a) what must be the magnitude of the constant acceleration of the police car to intercept the car if the police travel a distance of 300m? and b) How long does the police take to reach the car?arrow_forwardThe brakes are applied to a car traveling on a dry, level highway. A typical value for the magnitude of the car's acceleration is 4.95 m/s2. If the car's initial speed is 27.0 m/s, how long does it take to stop and how far does it travel, starting from the moment the brakes are applied?arrow_forwardYou are driving a car behind another car. Both cars are moving at speed 80 km/h. Assume your brakes are just a bit harder than the car ahead and your reaction time is 0.60 s. What minimum distance behind the car in front should you drive so that you do not crash into the car's rear end if the driver of that car slams on the brakes?arrow_forward
- Answer this problem by using " COMPONENT METHOD ". Thank you.arrow_forwardThe human body can survive an acceleration trauma incident (sudden stop) if the magnitude of the acceleration is less than 250 m/s2. If you are in an automobile accident with an initial speed of 105 km/h (65 mi/h) and are stopped by an airbag that inflates from the dashboard, over what minimum distance must the airbag stop you for you to survive the crash?arrow_forwardA sled starts from rest at the top of a hill and slides down with a constant acceleration. At some later time, the sled is 14.4 m from the top, 2.00 s after that it is 25.6 m from the top, 2.00 s later 40.0 m from the top, and 2.00 s later it is 57.6 m from the top. (a) What is the magnitude of the average velocity of the sled during each of the 2.00-s intervals after passing the 14.4-m point?(b) What is the acceleration of the sled? (c) What is the speed of the sled when it passes the 14.4-m point? (d) How much time did it take to go from the top to the 14.4-m point? (e) How far did the sled go during the first second after passing the 14.4-m point?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Relative Velocity - Basic Introduction; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=_39hCnqbNXM;License: Standard YouTube License, CC-BY