Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 2, Problem 3Q
Figure 2-18 shows four paths along which objects move from a starting point to a final point, all in the same time interval. The paths pass over a grid of equally spaced straight lines. Rank the paths according to (a) the average velocity of the objects and (b) the average speed of the objects, greatest first.
Figure 2-18 Question 3.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
Example 2-17 depicts the following scenario with the accompanying figures.
A speeder doing 40.0 mi/h (about 17.9 m/s) in a 25 mi/h zone approaches a parked police car. The instant the speeder passes the police car, the police begin their pursuit. The speeder maintains a constant velocity, and the police car accelerates with a constant acceleration of 3.3
m/s².
Now we will consider some slightly different related scenarios to Example 2-17.
▼
Part A
dmax
Submit
=
Part B
ΠΑΞΙΑΣΦΑ
AΣO
X Incorrect; Try Again; 4 attempts remaining
a=
Previous Answers Request Answer
?
• [ ?
= 17.9 m/s
Suppose the speeder (red car) is traveling with a constant speed of 17 m/s. If the police car is to start from rest and catch the speeder in 13 s or less, what is the maximum head-start distance the speeder can have? Measure time from the moment the police car starts.
Express your answer using one significant figure.
m
5-0
PONICE
a=0
1=4.51 m/s²
(
175
150
125
100
75
50
25
Speeder,
Police car,
Xp
Time, t(s)
8…
A person walks first at a constant speed of 7 m/s along a straight line from point A to point B and then back
along the line from B to A at a constant speed of 5 m/s. What is:
(a) Her average speed over the entire trip?
(b) Her average velocity over the entire trip?
A runner is running around rectangular track with length = 50 meters and width = 20 meters. He travels around rectangular track twice, finally running back to starting point. If the total time he takes to run around the track is 100 seconds, determine average speed and average velocity.
Chapter 2 Solutions
Fundamentals of Physics Extended
Ch. 2 - Figure 2-16 gives the velocity of a particle...Ch. 2 - Figure 2-17 gives the acceleration at of a...Ch. 2 - Figure 2-18 shows four paths along which objects...Ch. 2 - Figure 2-19 is a graph of a particles position...Ch. 2 - Figure 2-20 gives the velocity of a particle...Ch. 2 - At t = 0, a particle moving along an x axis is at...Ch. 2 - Hanging over the railing of a bridge, you drop an...Ch. 2 - The following equations give the velocity vt of a...Ch. 2 - In Fig. 2-22, a cream tangerine is thrown directly...Ch. 2 - Suppose that a passenger intent on lunch during...
Ch. 2 - Figure 2-23 shows that a particle moving along an...Ch. 2 - While driving a car at 90 km/h, how far do you...Ch. 2 - Compute your average velocity in the following two...Ch. 2 - SSM WWW An automobile travels on a straight road...Ch. 2 - A car moves uphill at 40 km/h and then back...Ch. 2 - SSM The position of an object moving along an x...Ch. 2 - The 1992 world speed record for a bicycle...Ch. 2 - Two trains, each having a speed of 30 km/h, are...Ch. 2 - GO Panic escape. Figure 2-24 shows a general...Ch. 2 - ILW In 1 km races, runner 1 on track 1with time 2...Ch. 2 - To set a speed record in a measured straight-line...Ch. 2 - GO You are to drive 300 km to an interview. The...Ch. 2 - Traffic shock wave. An abrupt slowdown in...Ch. 2 - ILW You drive on Interstate 10 from San Antonio to...Ch. 2 - GO An electron moving along the x axis has a...Ch. 2 - GO a If a particles position is given by x = 4 ...Ch. 2 - The position function xt of a particle moving...Ch. 2 - The position of a particle moving along the x axis...Ch. 2 - The position of a particle moving along an x axis...Ch. 2 - SSM At a certain time a particle had a speed of 18...Ch. 2 - a If the position of a particle is given by x =...Ch. 2 - From t = 0 to t = 5.00 min, a man stands still,...Ch. 2 - The position of a particle moving along the x axis...Ch. 2 - SSM An electron with an initial velocity v0 = 1.50...Ch. 2 - Catapulting mushrooms. Certain mushrooms launch...Ch. 2 - An electric vehicle starts from rest and...Ch. 2 - A muon an elementary particle enters a region with...Ch. 2 - An electron has a constant acceleration of 3.2...Ch. 2 - On a dry road, a car with good tires may be able...Ch. 2 - ILW A certain elevator cab has a total run of 190...Ch. 2 - The brakes on your car can slow you at a rate of...Ch. 2 - SSM Suppose a rocket ship in deep space moves with...Ch. 2 - A worlds land speed record was set by Colonel...Ch. 2 - SSM ILW A car traveling 56.0 km/h is 24.0 m from a...Ch. 2 - GO In Fig. 2-27, a red car and a green car,...Ch. 2 - Figure 2-27 shows a red car and a green car that...Ch. 2 - A car moves along an x axis through a distance of...Ch. 2 - Figure 2-29 depicts the motion of a particle...Ch. 2 - a If the maximum acceleration that is tolerable...Ch. 2 - Cars A and B move in the same direction in...Ch. 2 - You are driving toward a traffic signal when it...Ch. 2 - GO As two trains move along a track, their...Ch. 2 - GO You are arguing over a cell phone while...Ch. 2 - GO When a high-speed passenger train traveling at...Ch. 2 - When startled, an armadillo will leap upward....Ch. 2 - SSM WWWa With what speed must a ball be thrown...Ch. 2 - Raindrops fall 1700 m from a cloud to the ground....Ch. 2 - SSMAt a construction site a pipe wrench struck the...Ch. 2 - A hoodlum throws a stone vertically downward with...Ch. 2 - SSM A hot-air balloon is ascending at the rate of...Ch. 2 - At time t = 0, apple 1 is dropped from a bridge...Ch. 2 - As a runaway scientific balloon ascends at 19.6...Ch. 2 - GO A bolt is dropped from a bridge under...Ch. 2 - SSM ILW A key falls from a bridge that is 45 m...Ch. 2 - GO A stone is dropped into a river from a bridge...Ch. 2 - SSM A ball of moist clay falls 15.0 m to the...Ch. 2 - GO Figure 2-35 shows the speed v versus height y...Ch. 2 - To test the quality of a tennis ball, you drop it...Ch. 2 - An object falls a distance h from rest. If it...Ch. 2 - Water drips from the nozzle of a shower onto the...Ch. 2 - GO A rock is thrown vertically upward from ground...Ch. 2 - GO A steel ball is dropped from a buildings roof...Ch. 2 - A basketball player grabbing a rebound jumps76.0...Ch. 2 - GO A drowsy cat spots a flowerpot that sails first...Ch. 2 - A ball is shot vertically upward from the surface...Ch. 2 - Figure 2-15a gives the acceleration of a...Ch. 2 - In a forward punch in karate, the fist begins at...Ch. 2 - When a soccer ball is kicked toward a player and...Ch. 2 - A salamander of the genus Hydromantes capturesprey...Ch. 2 - ILW How far does the runner whose velocitytime...Ch. 2 - Two particles move along an x axis. The position...Ch. 2 - In an arcade video game, a spot is programmed to...Ch. 2 - A rock is shot vertically upward from the edge of...Ch. 2 - GO At the instant the traffic light turns green,...Ch. 2 - A pilot flies horizontally at 1300 km/h, at height...Ch. 2 - GO To stop a car, first you require a certain...Ch. 2 - GO Figure 2-42 shows part of a street where...Ch. 2 - SSM A hot rod can accelerate from 0 to 60 km/h in...Ch. 2 - GO A red train traveling at 72 km/h and a green...Ch. 2 - GO At time t = 0, a rock climber accidentally...Ch. 2 - A train started from rest and moved with constant...Ch. 2 - SSM A particles acceleration along an x axis is a...Ch. 2 - Figure 2-44 gives the acceleration a versus time t...Ch. 2 - Figure 2-45 shows a simple device for measuring...Ch. 2 - A rocket-driven sled running on a straight, level...Ch. 2 - A mining cart is pulled up a hill at 20 km/h and...Ch. 2 - A motorcyclist who is moving along an x axis...Ch. 2 - SSM When the legal speed limit for the New York...Ch. 2 - A car moving with constant acceleration covered...Ch. 2 - SSM A certain juggler usually tosses balls...Ch. 2 - A particle starts from the origin at t = 0 and...Ch. 2 - A rock is dropped from a 100-m-high cliff. How...Ch. 2 - Two subway stops are separated by 1100 m. If a...Ch. 2 - A stone is thrown vertically upward. On its way up...Ch. 2 - A rock is dropped from rest from the top of a...Ch. 2 - SSM An iceboat has a constant velocity toward the...Ch. 2 - A lead ball is dropped in a lake from a diving...Ch. 2 - The single cable supporting an unoccupied...Ch. 2 - Two diamonds begin a free fall from rest from the...Ch. 2 - A ball is thrown vertically downward from the top...Ch. 2 - A parachutist bails out and freely falls 50 m....Ch. 2 - A ball is thrown down vertically with an initial...Ch. 2 - The sport with the fastest moving ball is jai...Ch. 2 - If a baseball pitcher throws a fastball at a...Ch. 2 - A proton moves along the x axis according to the...Ch. 2 - A motorcycle is moving at 30 m/s when the rider...Ch. 2 - A shuffleboard disk is accelerated at a constant...Ch. 2 - The head of a rattlesnake can accelerate at 50...Ch. 2 - A jumbo jet must reach a speed of 360 km/h on the...Ch. 2 - An automobile driver increases the speed at a...Ch. 2 - On average, an eye blink lasts about 100 ms. How...Ch. 2 - A certain sprinter has a top speed of 11.0 m/s. If...Ch. 2 - The speed of a bullet is measured to be 640 m/s as...Ch. 2 - The Zero Gravity Research Facility at the NASA...Ch. 2 - A car can be braked to a stop from the...Ch. 2 - In 1889, at Jubbulpore, India, a tug-of-war was...Ch. 2 - Most important in an investigation of an airplane...Ch. 2 - From January 26, 1977, to September 18, 1983,...Ch. 2 - The wings on a stonefly do not flap, and thus the...Ch. 2 - The position of a particle as it moves along a y...
Additional Science Textbook Solutions
Find more solutions based on key concepts
FOCUS ON ENERGY AND MATTER In a short essay (about 100-150 words), discuss how prokaryotes and other members of...
Campbell Biology in Focus (2nd Edition)
Does solar radiation that is reflected and scattered heat the objects it strikes?
Applications and Investigations in Earth Science (9th Edition)
4. What five specific threats to biodiversity are described in this chapter? Provide an example of each.
Biology: Life on Earth (11th Edition)
Nitrogen at 300 K. 3 MPa is heated to 500 K Find the change in enthalpy using (a) Table B.2.1. (b) Table A.8, a...
Fundamentals Of Thermodynamics
60. You are asked to consult for the city’s research hospital, where a group of doctors is investigating the bo...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Choose the best answer to each of the following. Explain your reasoning. Which one of the following does the tr...
Cosmic Perspective Fundamentals
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A person walks first at a constant speed of 5.50 m/s along a straight line from point A to point B and then back along the line from B to A at a constant speed of 3. What is her average speed over the entire trip. (In m/s)arrow_forwardA train accelerates uniformly from rest at station A to a maximum speed of 72 km/h. The constant maximum speed is maintained for a period of time and the train then decelerates uniformly until it comes to a stop at station B. The distance between the two railway stations is 22 km and the journey takes 20 minutes. If the magnitude of the acceleration is half that of deceleration, by using the graphical method, determine the acceleration, in meters per second per second, and the time, in minutes, during which the train travels at its maximum speed.arrow_forwardA circular track has a radius of 120 m. An athlete runs half-way round the track and stops. (i) How much distance has she covered? (ii) Calculate her displacement. She takes 54 s to cover the distance. (iii) Calculate her average speed, using the formula average speed = distance covered time taken (iv) Calculate her average velocity using the formula average velocity = displacement time takenarrow_forward
- A turtle and a rabbit engage in a footrace over a distance of 4.00 km. The rabbit runs 0.500 km and then stops for a 90.0-min nap. Upon awakening, he remembers the race and runs twice as fast. Finishing the course in a total time of 1.75 h, the rabbit wins the race. (a) Calculate the average speed of the rabbit. (b) What was his average speed before he stopped for a nap? Assume no detours or doubling back. step by steparrow_forwardTo stop a car, first you require a certain reaction time to begin braking; then the car slows under the constant braking deceleration. Suppose that the total distance moved by your car during these two phases is 51.8 m when its initial speed is 81.3 km/h, and 20.1 m when its initial speed is 48.8 km/h. What are (a) your reaction time and (b) the magnitude of the deceleration?arrow_forwardA cyclist, whilst overtaking another bike, increases his speed uniformly from 4.2 m s–1 to 6.3 m s–1 over a time interval of 5.3 s. Determine the acceleration and distance travelled.arrow_forward
- As a training exercise, a soccer player must run the length of the soccer field (leg 1), then turn around and run back to her starting point (leg 2) without stopping. If the length of the soccer field is L meters, and she runs the leg 1 in t 1 seconds, then turns around and runs leg 2 in t_2 seconds, find the following: (Write your answers using the symbols as they are written in the question.) a) Her average velocity during leg 1 was L/t'1 m-s 1, b) Her average velocity during leg 2 was L/t 2 m-s1. c) Her average velocity over the entire exercise was m-s 1. d) Her average speed during the entire exercise was 2L/t_1+t_2 m-s1. CO3, W31, W32 Ask Dr. Hébert for help.arrow_forwardYou start from your house at 10:00am, goes to the grocery shop and then to your friend's house. You reach the the friend's house at 10:30am. Calculate (i) the distance travelled (ii) the displacement (iii) average speed (iv) average velocity (i) the distance travelled is =Answer (ii) the displacement is =Answer (iii) the average speed is Answer (iv) the average velocity isarrow_forwardA motorist has to travel 3.50km in a city where his average speed should not exceed 25km/h. If he increases his average speed 40km/h, how much time will he gain in his journey?arrow_forward
- The position of a particle is given by ?(?) = 4?^2 − 5? + 6 where x is in meters and t in seconds. (a) Determine the average speed in the time interval from t = 1.2 s to t = 3.5 s. (b) to What time is the velocity of the particle 0?arrow_forwardA turtle and a rabbit engage in a footrace over a distance of 4000m. The rabbit runs 0.500 km and then stops for a 1.5 hr nap. Upon awakening, he remembers the race and runs twice as fast. Finishing the course in a total time of 1.75 hr, the rabbit wins the race. (a) Calculate the average speed of the rabbit in SI units. (b) What was his average speed in SI units before he stopped for a nap? Assume no detours or doubling back.arrow_forwardNow let’s apply our definition of average velocity to a swimming competition. During one heat of a swim meet, a swimmer performs the crawl stroke in a pool 50.0 mm long, as shown in (Figure 1). She swims a length at racing speed, taking 24.0 ss to cover the length of the pool. She then takes twice that time to swim casually back to her starting point. Find (a) her average velocity for each length and (b) her average velocity for the entire swim. c) If the swimmer could cross a 15 kmkm channel maintaining the same average velocity as for the first 50 mm in the pool, how long would it take?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
Position/Velocity/Acceleration Part 1: Definitions; Author: Professor Dave explains;https://www.youtube.com/watch?v=4dCrkp8qgLU;License: Standard YouTube License, CC-BY