Answer the following questions about the macronutrients sodium, potassium, and chlorine.
a. Is each element classified as a metal, nonmetal, or metalloid?
b. In which block does each element reside?
c. Which element has the smallest atomic radius?
d. Which element has the largest atomic radius?
e. Which element has the largest ionization energy?
f. Which element has the smallest ionization energy?
g. How many valence electrons does each element possess?

(a)
Interpretation:
The elements sodium, potassium, and chlorine should be classified as metal, nonmetal or metalloid.
Concept Introduction:
An atom is composed of three main sub-atomic particles; electrons, neutrons and protons. The atomic number of the elements represents the number of protons or electrons in a neutral atom. All known elements are arranged in a tabular form in increasing order of their atomic number that is called the periodic table.
The distribution of electrons in an atom can be shown with the help of electronic configuration. The electronic configuration of an element represents the number of electrons in different energy levels of an element.
Answer to Problem 81P
Sodium − Metal
Potassium − Metal
Chlorine − Nonmetal
Explanation of Solution
All the elements in the periodic table can be classified as metal, nonmetal and metalloid. In the periodic table, from group 1 to 12 are metals and nonmetals are placed from group 13 to 18. Metalloids are placed in between metals and nonmetals in the periodic table. Sodium and potassium are metals as they are placed in group -1 whereas chlorine is a nonmetal as it is placed in group 17 of the periodic table.

(b)
Interpretation:
The block in which elements sodium, potassium, and chlorine elements should be determined.
Concept Introduction:
An atom is composed of three main sub-atomic particles; electrons, neutrons and protons. The atomic number of the elements represents the number of protons or electrons in a neutral atom. All known elements are arranged in a tabular form in increasing order of their atomic number that is called the periodic table.
The distribution of electrons in an atom can be shown with the help of electronic configuration. The electronic configuration of an element represents the number of electrons in different energy levels of an element.
Answer to Problem 81P
Sodium − s-block element
Potassium − s-block element
Chlorine − p-block element
Explanation of Solution
All the elements in the periodic table can be classified as metal, nonmetal and metalloid. In the periodic table, from group 1 to 12 are metals and nonmetals are placed from group 13 to 18. Metalloids are placed in between metals and nonmetals in the periodic table.
The periodic table can also divide on the basis of blocks as s, p, d and f-block elements. This classification is given on the basis of valence shell configuration of elements. The valence orbital of the element will determine the block of element. Sodium and potassium are s-block element as their valence shell is ns1 whereas Chlorine is a p-block element as the valence shell configuration of Chlorine is 3s2, 3p5.
Sodium −
Potassium-
Chlorine -

(c)
Interpretation:
The element with smallest atomic radius out of sodium, potassium, and chlorine should be determined.
Concept Introduction:
An atom is composed of three main sub-atomic particles; electrons, neutrons and protons. The atomic number of the elements represents the number of protons or electrons in a neutral atom. All known elements are arranged in a tabular form in increasing order of their atomic number that is called the periodic table.
The distribution of electrons in an atom can be shown with the help of electronic configuration. The electronic configuration of an element represents the number of electrons in different energy levels of an element.
Answer to Problem 81P
Chlorine has the smallest atomic radius.
Explanation of Solution
In the periodic table, on moving down in the group the atomic radii increases as the number of valence shell increases in atom, whereas the atomic radii decreases across the period because the valence shell remains same and nuclear attraction increases. Sodium and potassium are placed in same group. Therefore, potassium should be bigger than sodium. Chlorine and sodium are placed in same period and chlorine is placed in the 17th group (at left most side),. Therefore, the atomic radius of chlorine must be smallest.

(d)
Interpretation:
The element with largest atomic radius out of sodium, potassium, and chlorine should be determined.
Concept Introduction:
An atom is composed of three main sub-atomic particles; electrons, neutrons and protons. The atomic number of the elements represents the number of protons or electrons in a neutral atom. All known elements are arranged in a tabular form in increasing order of their atomic number that is called the periodic table.
The distribution of electrons in an atom can be shown with the help of electronic configuration. The electronic configuration of an element represents the number of electrons in different energy levels of an element.
Answer to Problem 81P
Potassium has largest atomic radius.
Explanation of Solution
In the periodic table, on moving down in the group the atomic radii increases as the number of valence shell increases in atom, whereas the atomic radii decreases across the period because the valence shell remains same and nuclear attraction increases. Sodium and potassium are placed in same group. Therefore, potassium should be bigger than sodium. Chlorine and sodium are placed in same period and chlorine is placed in the 17th group (at left most side). Therefore, the atomic radius of chlorine must be the smallest. Overall potassium will have the largest atomic radius.

(e)
Interpretation:
The element with largest ionization energy out of sodium, potassium, and chlorine should be determined.
Concept Introduction:
An atom is composed of three main sub-atomic particles; electrons, neutrons and protons. The atomic number of the elements represents the number of protons or electrons in a neutral atom. All known elements are arranged in a tabular form in increasing order of their atomic number that is called the periodic table.
The distribution of electrons in an atom can be shown with the help of electronic configuration. The electronic configuration of an element represents the number of electrons in different energy levels of an element.
Answer to Problem 81P
Chlorine has largest ionization energy.
Explanation of Solution
In the periodic table down in the group the atomic radii increases as the number of valence shell increases in atom, whereas the atomic radii decreases across the period because the valence shell remains same and nuclear attraction increases.
Ionization energy is the energy that is required to remove an electron from the valence shell of the neutral gaseous atom. As the atomic radii increases down in the group, the nuclear attraction on the valence electrons decreases that reduces the ionization energy of element. Hence the ionization energy decreases down in the group and increases across the period.
Sodium and potassium are placed in same group. Therefore, potassium should be bigger than sodium and must have lower ionization energy. Chlorine and sodium are placed in same period and chlorine is placed in the 17th group (at left most side),. Therefore, the atomic radius of chlorine must be smallest with largest ionization energy.

(f)
Interpretation:
The element with smallest ionization energy out of sodium, potassium, and chlorine should be determined.
Concept Introduction:
An atom is composed of three main sub-atomic particles; electrons, neutrons and protons. The atomic number of the elements represents the number of protons or electrons in a neutral atom. All known elements are arranged in a tabular form in increasing order of their atomic number that is called the periodic table.
The distribution of electrons in an atom can be shown with the help of electronic configuration. The electronic configuration of an element represents the number of electrons in different energy levels of an element.
Answer to Problem 81P
Potassium has smallest ionization energy.
Explanation of Solution
In the periodic table down in the group the atomic radii increases as the number of valence shell increases in atom, whereas the atomic radii decreases across the period because the valence shell remains same and nuclear attraction increases.
Ionization energy is the energy that is required to remove an electron from the valence shell of the neutral gaseous atom. As the atomic radii increases down in the group, the nuclear attraction on the valence electrons decreases that reduces the ionization energy of element. Hence the ionization energy decreases down in the group and increases across the period.
Sodium and potassium are placed in same group. Therefore, potassium should be bigger than sodium and must have lowest ionization energy. Chlorine and sodium are placed in same period and chlorine is placed in the 17th group (at left most side),. Therefore, the atomic radius of chlorine must be smallest with largest ionization energy. Overall out of Na, K and Cl; K will have lowest ionization energy.

(g)
Interpretation:
The number of valence electrons in sodium, potassium, and chlorine should be determined.
Concept Introduction:
An atom is composed of three main sub-atomic particles; electrons, neutrons and protons. The atomic number of the elements represents the number of protons or electrons in a neutral atom. All known elements are arranged in a tabular form in increasing order of their atomic number that is called the periodic table.
The distribution of electrons in an atom can be shown with the help of electronic configuration. The electronic configuration of an element represents the number of electrons in different energy levels of an element.
Answer to Problem 81P
Sodium −
Potassium-
Chlorine -
Explanation of Solution
All the elements in the periodic table can be classified as metal, nonmetal and metalloid. In the periodic table, from group 1 to 12 are metals and nonmetals are placed from group 13 to 18. Metalloids are placed in between metals and nonmetals in the periodic table.
The periodic table can also divide on the basis of blocks as s, p, d and f-block elements. This classification is given on the basis of valence shell configuration of elements. The valence orbital of the element will determine the block of element. The electrons in the outermost orbital are called valence electrons. Hence the number of valence electrons is:
Sodium −
Potassium-
Chlorine -
Want to see more full solutions like this?
Chapter 2 Solutions
GENERAL,ORGANIC, & BIOLOGICAL CHEM-ACCES
Additional Science Textbook Solutions
Microbiology Fundamentals: A Clinical Approach
Biology: Life on Earth (11th Edition)
Organic Chemistry
Campbell Essential Biology (7th Edition)
- 1. Give the structures of the products obtained when the following are heated. Include stereochemistry where relevant. A NO2 + NO2 B + C N=C CEN + { 2. Which compounds would you heat together in order to synthesize the following?arrow_forwardExplain how myo-inositol is different from D-chiro-inositol. use scholarly sources and please hyperlink.arrow_forwardWhat is the molarisuty of a 0.396 m glucose solution if its density is 1.16 g/mL? MM glucose 180.2 /mol.arrow_forward
- Provide the proper IUPAC or common name for the following compound. Dashes, commas, and spaces must be used correctly. Br ......Im OHarrow_forwardCan you please help me solve this problems. The top one is just drawing out the skeletal correct and then the bottom one is just very confusing to me and its quite small in the images. Can you enlarge it and explain it to me please. Thank You much (ME EX1) Prblm #33arrow_forwardI'm trying to memorize VESPR Shapes to solve problems like those. I need help making circles like the second image in blue or using an x- and y-axis plane to memorize these and solve those types of problems, especially the ones given in the top/first image (180, 120, 109.5). Can you help me with this? or is their any other efficient method do soarrow_forward
- Can you please explain this problems to me? I'm very confused about it. Please provide a detailed, step-by-step explanation for me! (ME EX1) Prblm 27arrow_forwardQuestion 6 of 7 (1 point) | Question Attempt: 1 of 1 = 1 ✓2 ✓ 3 ✓ 4 ✓ 5 6 ✓ 7 This organic molecule is dissolved in a basic aqueous solution: Jen ✓ ? A short time later sensitive infrared spectroscopy reveals the presence of a new C-OH stretch absorption. That is, must now be a new molecule present with at least one C- OH bond. there 18 In the drawing area below, show the detailed mechanism that could convert the molecule above into the new molecule Ar © + Click and drag to start drawing a structure. Add/Remove step Click and drawing Save For Later Submit Assignmentarrow_forwardCan you please explain this problem to me? I'm very confused about it. Please provide a detailed, step-by-step explanation for me! (ME EX1) Prblm 22arrow_forward
- Can you please explain this problems to me? I'm very confused about it. Please provide a detailed, step-by-step explanation for me! (ME EX1) Prblm 30arrow_forwardThis organic molecule is dissolved in a basic aqueous solution: O ? olo RET A short time later sensitive infrared spectroscopy reveals the presence of a new C-OH stretch absorption. That is, there Ar must now be a new molecule present with at least one C - OH bond. In the drawing area below, show the detailed mechanism that could convert the molecule above into the new molecule. $ Add/Remove steparrow_forwardSo the thing is im trying to memorize VESPR Shapes in order to be able to solve problems like so, and I need help with making circles like the second image that's in blue or using an x and y axis plane in order to memorize these and be able to solve those type of problems. Especially like the ones given in the top / first image. (180 , 120 , 109.5) Can you help me with this.arrow_forward
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub Co
- Introductory Chemistry: An Active Learning Approa...ChemistryISBN:9781305079250Author:Mark S. Cracolice, Ed PetersPublisher:Cengage LearningLiving By Chemistry: First Edition TextbookChemistryISBN:9781559539418Author:Angelica StacyPublisher:MAC HIGHERChemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage Learning



