Physics for Scientists and Engineers: A Strategic Approach with Modern Physics, Books a la Carte Edition; Student Workbook for Physics for Scientists ... eText -- ValuePack Access Card (4th Edition)
4th Edition
ISBN: 9780134564234
Author: Randall D. Knight (Professor Emeritus)
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 2, Problem 66EAP
A motorist is driving at 20 m/s when she sees that a traffic light 200 m ahead has just turned red. She knows that this light stays red for 15 s, and she wants to reach the light just as it turns green again. It takes her 1.0 s to step on the brakes and begin slowing. What is her speed as she reaches the light at the instant it turns green?
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
A driver is traveling 17.8 m/s when she sees a red light ahead. Her car is capable of decelerating at a rate of 3.55 m/s2.
If it takes her 0.420 s to get the brakes on and she is 20.0 m from the intersection when she sees the light, will she be able to stop in time? (tick the right answer)
yes
no
How far from the beginning of the intersection will she be?
A bus bound to San Carlos City is moving
up a steep hill in DSB at 30m/s when
suddenly the engine stopped. The driver
hits the brakes, but they don't work either.
The bus starts to accelerate at -3m/s2. How
far does it move forward before it starts
sliding back down the hill?
Ben and Holly were playing with a flash drive in the computer room. Ben slid the flash drive on top of the table for Holly to catch. However, Holly failed to catch the flash drive so it went straight out of the window with an initial velocity of 2.5 m/s. If the point at which it exits the window is 15 m from the ground, determine how fast it is moving the instant before it hits the ground?
Chapter 2 Solutions
Physics for Scientists and Engineers: A Strategic Approach with Modern Physics, Books a la Carte Edition; Student Workbook for Physics for Scientists ... eText -- ValuePack Access Card (4th Edition)
Ch. 2 - For Questions 1 through 3, interpret the position...Ch. 2 - For Questions 1 through 3, interpret the position...Ch. 2 - For Questions 1 through 3, interpret the position...Ch. 2 - FIGURE Q2.4 shows a position-versus-time graph for...Ch. 2 - FIGURE Q2.5 shows a position-versus-time graph for...Ch. 2 - FIGURE Q2.6 shows the position-versus-time graph...Ch. 2 - FIGURE Q2.7 shows the position-versus-time graph...Ch. 2 - FIGURE Q2.8 shows six frames from the motion...Ch. 2 - You’re driving along the highway at a steady speed...Ch. 2 - A bicycle is traveling east. Can its acceleration...
Ch. 2 - (a) Give an example of a vertical motion with a...Ch. 2 - A ball is thrown straight up into the air. At each...Ch. 2 - A rock is thrown (not dropped) straight do from a...Ch. 2 - FIGURE Q2.14 shows the velocity-versus-time graph...Ch. 2 - Alan leaves Los Angeles at 8:00 A.M. to drive to...Ch. 2 - Julie drives 100 mi to Grandmother’s house. On the...Ch. 2 - Larry leaves home at 9:05 and runs at constant...Ch. 2 - FIGURE EX2.4 is the position-versus-time graph of...Ch. 2 - FIGURE EX2.5 shows the position graph of a...Ch. 2 - A particle starts from x0=10matt=0s and moves with...Ch. 2 - FIGURE EX2.7 is a somewhat idealized graph of the...Ch. 2 - FIGURE EX2.8 shows the velocity graph for a...Ch. 2 - FIGURE EX2.9 shows the velocity graph of a...Ch. 2 - FIGURE EX2.7 showed the velocity graph of blood in...Ch. 2 - Prob. 11EAPCh. 2 - FIGURE EX2.1 2 shows the velocity-versus-time...Ch. 2 - a. What constant acceleration, in SI units, must a...Ch. 2 - A jet plane is cruising at 300 m/s when suddenly...Ch. 2 - a. How many days will it take a spaceship to...Ch. 2 - Prob. 16EAPCh. 2 - A speed skater moving to the left across...Ch. 2 - A Porsche challenges a Honda to a 400 m race....Ch. 2 - Acar starts from rest at a stop sign. It...Ch. 2 - Prob. 20EAPCh. 2 - A student standing on the ground throws a ball...Ch. 2 - A rock is tossed straight up from ground level...Ch. 2 - 23. When jumping, a flea accelerates at an...Ch. 2 - Prob. 24EAPCh. 2 - A rock is dropped from the top of a tall building....Ch. 2 - A skier is gliding along at 3.0 m/s on horizontal,...Ch. 2 - A car traveling at 30 m/s runs out of gas while...Ch. 2 - Prob. 28EAPCh. 2 - A snowboarder glides down a 50-m-long, 15° hill....Ch. 2 - A small child gives a plastic frog a big push at...Ch. 2 - FIGURE EX2.31 shows the acceleration-versus-time...Ch. 2 - Prob. 32EAPCh. 2 - A particle moving along the x-axis has its...Ch. 2 - A particle moving along the x-axis has its...Ch. 2 - The position of a particle is given by the...Ch. 2 - The position of a particle is given by the...Ch. 2 - Particles A. B. and C move along the x-axis....Ch. 2 - A block is suspended from a spring, pulled down,...Ch. 2 - A particle’s velocity is described by the function...Ch. 2 - Prob. 40EAPCh. 2 - Prob. 41EAPCh. 2 - A particles velocity is given by the function vx=...Ch. 2 - A ball rolls along the smooth track shown in...Ch. 2 - Draw position, velocity, and acceleration graphs...Ch. 2 - FIGURE P2.45 shows a set of kinematic graphs for a...Ch. 2 - FIGURE P2.46 shows a set of kinematic graphs for a...Ch. 2 - The takeoff speed for an Airbus A320 jetliner is...Ch. 2 - You are driving to the grocery store at 20 m/s....Ch. 2 - You’re driving down the highway late one night at...Ch. 2 - Two cars are driving at the same constant speed on...Ch. 2 - You are playing miniature golf at the golf course...Ch. 2 - The minimum stopping distance for a car traveling...Ch. 2 - A cheetah spots a Thomson’s gazelle, its preferred...Ch. 2 - You are at a train station, standing next to the...Ch. 2 - A 200 kg weather rocket is loaded with 100 kg of...Ch. 2 - A 1000 kg weather rocket is launched straight up....Ch. 2 - A lead ball is dropped into a lake from a diving...Ch. 2 - A hotel elevator ascends 200 m with a maximum...Ch. 2 - A basketball player can jump to a height of 55 cm....Ch. 2 - You are 9.0 m from the door of your bus, behind...Ch. 2 - Ann and Carol are driving their cars along the...Ch. 2 - Amir starts riding his bike up a 200-m-long slope...Ch. 2 - A very slippery block of ice slides down a smooth...Ch. 2 - Bob is driving the getaway car after the big bank...Ch. 2 - One game at the amusement park has you push a puck...Ch. 2 - A motorist is driving at 20 m/s when she sees that...Ch. 2 - Nicole throws a ball straight up. Chad watches the...Ch. 2 - David is driving a steady 30 m/s when he passes...Ch. 2 - A cat is sleeping on the floor in the middle of a...Ch. 2 - Water drops fall from the edge of a roof at a...Ch. 2 - I was driving along at 20 m/s, trying to change a...Ch. 2 - As an astronaut visiting Planet X, you’re assigned...Ch. 2 - Your goal in laboratory is to launch a ball of...Ch. 2 - When a 1984 Alfa Romeo Spider sports car...Ch. 2 - The two masses in FIGURE P2.75 slide on...Ch. 2 - In Problems 76 through 79, you are given the...Ch. 2 - In Problems 76 through 79, you are given the...Ch. 2 - In Problems 76 through 79, you are given the...Ch. 2 - In Problems 76 through 79, you are given the...Ch. 2 - A rocket is launched straight up with constant...Ch. 2 - Careful measurements have been made of Olympic...Ch. 2 - III Careful measurements have been made of Olympic...Ch. 2 - A sprinter can accelerate with constant...Ch. 2 - A rubber ball is shot straight up from the ground...Ch. 2 - The Starship Enterprise returns from warp drive to...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- As you drive in your car at 15 m/s (just a bit under 35 mph), you see a child’s ball roll into the street ahead of you. You hit the brakes and stop as quickly as you can. In this case, you come to rest in 1.5 s. How far does your car travel as you brake to a stop?arrow_forwardYou are driving your car, and the traffic light ahead turns red. You apply the brakes for 2.56 s, and the velocity of the car decreases to +4.84 m/s. The car’s deceleration has a magnitude of 3.67 m/s2 during this time. What is the car’s displacement?arrow_forwardHi, I am doing problem number 2 from the end of the chapter questions in my textbook. The problem reads as such: "An 18-year-old runner can complete a 10.0-km course with an average speed of 4.39 m/s. A 50-year-old runner can cover the same distance with an average speed of 4.27 m/s. How much later (in seconds) should the younger runner start in order to finish the course at the same time as the older runner?" I am looking at the solution for the problem and I did everything right except the last step. The solution says to subtract the time found for the 18 year old to run 10km from the time found for the 50 year old to run 10km. However, I divided the anwers I found. Why are we subtracting the answers from one another and not dividing them? Thank you!arrow_forward
- You are driving your car downtown from the beach, but you realize that you need to stop for food. You'd like to stop at the in and out on Jefferson Dr because you think they make the best hoagies in town. You start by driving west on Jefferson Dr at a speed of 18.0 m/s. After 6 minutes, you turn left on Washington st. You get stuck behind someone who isn't in as much of a hurry as you are, and so you slow your speed to 14.3 m/s and continue driving to the south on Washington for another 11 minutes. When you get to Jefferson, you are glad to be away from that slowpoke. You turn right and speed up to a speed of 26 m/s for 13 minutes on your way to the In & Out. At this point, how far (in meters) are you from your starting point at the beach? Note: 1 mph = 0.45 m/sarrow_forwardGretchen runs the first 4.0 km of a race at 5.0 m/s. Then a stiff wind comes up, so she runs the last 1.0 km at only 4.0 m/s. If she later ran the same course again, what constant speed would let her finish in the same time as in the first race?arrow_forwardIma Rushin can travel from Milwaukee Avenue to the school entrance gate at a constant speed of 22.5 m/s when the lights are green and there is no traffic. On Wednesday, Ima is stopped by a red light at Landwehr Road. She decelerates at -3.95 m/s2, then waits for 45.0 seconds before the light turns green and accelerates back up to speed at 4.91 m/s².arrow_forward
- A single-engine air plain starts its engine at one end of the runway. It accelerates at a constant rate and takes off at 38 m/s after 20 seconds on the runway, just as it is running out of runway. How long is the runway? Your Answer:arrow_forwardA cat is sleeping on the floor in the middle of a 3.0 m wide room when a barking dog enters with a speed of 1.50 m/s. As the dog enters, the cat immediately accelerates at 0.85 m/s2 toward an open window on the opposite side of the room. The dog is a bit startled by the cat and begins to slow down at 0.10 m/s2 as soon as it enters the room. How far is the cat in front of the dog as it leaps through the window?arrow_forwardYou are driving to the grocery store at 20m/s. You are 140m from an intersection when the traffic light turns red. Assume that your reaction time is 0.50s and that your car brakes with constant acceleration. What acceleration will stop the car right at the intersection?arrow_forward
- A motorcyclist heading east through a small town accelerates at a constant 4.9 m/s/s after he leaves the city limits (See figure). At time t = 0 s, he is 5.3 m east of the city-limits signpost, moving east at 27 m/s. Where is he when his velocity is = 37 m/s?arrow_forwardI tried asking this question before but I got a blank response. How do I find how far the jet traveled before stopping?arrow_forwardA car is traveling at a speed of 30 m/s, a typical highway speed, on wet pavement. The driver sees an obstacle ahead and decides to stop. From this instant, it takes him 0.75 s to begin applying the brakes. Once the brakes are applied, the car experiences an acceleration of -6.0 m/s2. How far does the car travel from the instant the driver notices the obstacle until it stops?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Position/Velocity/Acceleration Part 1: Definitions; Author: Professor Dave explains;https://www.youtube.com/watch?v=4dCrkp8qgLU;License: Standard YouTube License, CC-BY