Careful measurements have been made of Olympic sprinters in the 100 meter dash. A simple but reasonably accurate model is that a sprinter accelerates at 3.6 m/s 2 for 3 1 3 s, then runs at constant velocity to the finish line. a. What is the race time for a sprinter who follows this model? b. A sprinter could run a faster race by accelerating faster at the beginning, thus reaching top speed sooner. If a sprinter’s top speed is the same as in part a, what acceleration would he need to run the 100 meter dash in 9.9 s? c. By what percent did the sprinter need to increase his acceleration in order to decrease his time by 1%?
Careful measurements have been made of Olympic sprinters in the 100 meter dash. A simple but reasonably accurate model is that a sprinter accelerates at 3.6 m/s 2 for 3 1 3 s, then runs at constant velocity to the finish line. a. What is the race time for a sprinter who follows this model? b. A sprinter could run a faster race by accelerating faster at the beginning, thus reaching top speed sooner. If a sprinter’s top speed is the same as in part a, what acceleration would he need to run the 100 meter dash in 9.9 s? c. By what percent did the sprinter need to increase his acceleration in order to decrease his time by 1%?
Careful measurements have been made of Olympic sprinters in the 100 meter dash. A simple but reasonably accurate model is that a sprinter accelerates at 3.6 m/s2 for
3
1
3
s, then runs at constant velocity to the finish line.
a. What is the race time for a sprinter who follows this model?
b. A sprinter could run a faster race by accelerating faster at the beginning, thus reaching top speed sooner. If a sprinter’s top speed is the same as in part a, what acceleration would he need to run the 100 meter dash in 9.9 s?
c. By what percent did the sprinter need to increase his acceleration in order to decrease his time by 1%?
Example
Two charges, one with +10 μC of charge, and
another with - 7.0 μC of charge are placed in
line with each other and held at a fixed distance
of 0.45 m. Where can you put a 3rd charge of +5
μC, so that the net force on the 3rd charge is
zero?
*
Coulomb's Law Example
Three charges are positioned as seen below. Charge
1 is +2.0 μC and charge 2 is +8.0μC, and charge 3 is -
6.0MC.
What is the magnitude and the direction of the force
on charge 2 due to charges 1 and 3?
93
kq92
F
==
2
r13 = 0.090m
91
r12 = 0.12m
92
Coulomb's Constant: k = 8.99x10+9 Nm²/C²
✓
Make sure to draw a Free Body Diagram as well
Chapter 2 Solutions
Physics for Scientists and Engineers: A Strategic Approach with Modern Physics, Books a la Carte Edition; Student Workbook for Physics for Scientists ... eText -- ValuePack Access Card (4th Edition)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.