College Physics
1st Edition
ISBN: 9781938168000
Author: Paul Peter Urone, Roger Hinrichs
Publisher: OpenStax College
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 2, Problem 63PE
Construct the displacement graph for the subway shuttle train as shown in Figure 2.18(a). Your graph should show the position of the train, in kilometers, from
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
The Beretta Model 92S (the standard-issue U.S. army pistol) has a barrel 127 mmmm long. The bullets leave this barrel with a muzzle velocity of 349 m/sm/s.
1) What is the acceleration of the bullet while it is in the barrel, assuming it to be constant?
Express your answer in meters per second squared.
2) What is the acceleration of the bullet while it is in the barrel, assuming it to be constant?
Express your answer as a multiple of acceleration due to gravity g.
3) For how long is the bullet in the barrel?
Express your answer in seconds.
A ball on a table rolls 50 cm to the tables edge, drops 30 cm to the ground, and then continues to roll for 75 cm until eventually coming to a stop. What is the magnitude and direction of the ball’s displacement, in cm (that is, how far is it from where it started)? Use a drawing with variables clearly labeled
The position vector as a function of time of an object moving along a circular path is given by
* (t) = -cos tî – sintĵ
2.1 Show that the object moves on a circular path of radius 1.
2.2 Is the object moving with constant velocity? Support your answer with a calculation.
2.3 Show that the angle between the objects' acceleration and position vector is r.
2.4 Determine the object's acceleration at t = T s.
2.5 Is the object moving with constant acceleration? Support your answer with a calculation.
Chapter 2 Solutions
College Physics
Ch. 2 - Give an example in which there are clear...Ch. 2 - Under what circumstances does distance traveled...Ch. 2 - Bacteria move back and f01th by using their...Ch. 2 - A student writes, "A bird that is diving for prey...Ch. 2 - What is the speed of the bird in Exercise 2.4?Ch. 2 - Acceleration is the change in velocity over time....Ch. 2 - A weather forecast states that the temperature is...Ch. 2 - Give an example (but not one from the text) of a...Ch. 2 - There is a distinction between average speed and...Ch. 2 - Does a car's odometer measure position or...
Ch. 2 - If you divide the total distance traveled on a car...Ch. 2 - How are instantaneous velocity and instantaneous...Ch. 2 - Is it possible for speed to be constant while...Ch. 2 - Is it possible for velocity to be constant while...Ch. 2 - Give an example in which velocity is zero yet...Ch. 2 - If a subway train is moving to the left (has a...Ch. 2 - Plus and minus signs are used in one-dimensional...Ch. 2 - What information do you need in order to choose...Ch. 2 - What is the last thing you should do when solving...Ch. 2 - What is the acceleration of a rock thrown straight...Ch. 2 - An object that is thrown straight up falls back to...Ch. 2 - Suppose you throw a rock nearly straight up at a...Ch. 2 - If an object is thrown straight up and air...Ch. 2 - The severity of a fall depends on your speed when...Ch. 2 - How many times higher could an astronaut jump on...Ch. 2 - (a) Explain how you can use the graph of position...Ch. 2 - (a) Sketch a graph of velocity versus time...Ch. 2 - (a) Explain how you can determine the acceleration...Ch. 2 - (a) Sketch a graph of acceleration versus time...Ch. 2 - Consider the velocity vs. time graph of a person...Ch. 2 - A cylinder is given a push and then rolls up an...Ch. 2 - Find the following for path A in Figure 2.59: (a)...Ch. 2 - Find the following for path B in Figure 2.59: (a)...Ch. 2 - Find the following for path C in Figure 2.59: (a)...Ch. 2 - Find the following for path D in Figure 2.59: (a)...Ch. 2 - (a) Calculate Earth's average speed relative to...Ch. 2 - A helicopter blade spins at exactly 100...Ch. 2 - The North American and European continents are...Ch. 2 - Land west of the San Andreas fault in southern...Ch. 2 - On May 26, 1934, a streamlined, stainless steel...Ch. 2 - Tidal friction is slowing the rotation of the...Ch. 2 - A student drove to the university from her home...Ch. 2 - The speed of propagation of the action potential...Ch. 2 - Conversations with astronauts on the lunar surface...Ch. 2 - A football quarterback runs 15.0 m straight down...Ch. 2 - The planetary model of the atom pictures electrons...Ch. 2 - A cheetah can accelerate from rest to a speed of...Ch. 2 - Professional Application Dr. John Paul Stapp was...Ch. 2 - A commuter backs her car out of her garage with an...Ch. 2 - Assume that an intercontinental ballistic missile...Ch. 2 - An Olympic-class sprinter starts a race with an...Ch. 2 - A well-thrown ball is caught in a well-padded...Ch. 2 - A bullet in a gun is accelerated from the firing...Ch. 2 - (a) A light-rail commuter train accelerates at a...Ch. 2 - While entering a freeway, a car accelerates from...Ch. 2 - At the end of a race, a runner decelerates from a...Ch. 2 - Professional Application: Blood is accelerated...Ch. 2 - In a slap shot, a hockey player accelerates the...Ch. 2 - A powerful motorcycle can accelerate from rest to...Ch. 2 - Freight trains can produce only relatively small...Ch. 2 - A fireworks shell is accelerated from rest to a...Ch. 2 - A swan on a lake gets airborne by flapping its...Ch. 2 - Professional Application: A woodpecker's brain is...Ch. 2 - An unwary football player collides with a padded...Ch. 2 - In World War II, there were several reported cases...Ch. 2 - Consider a grey squirrel falling out of a tree to...Ch. 2 - An express train passes through a station. It...Ch. 2 - Dragsters can actually reach a top speed of 145...Ch. 2 - A bicycle racer sprints at the end of a race to...Ch. 2 - In 1967, New Zealander Burt Munro set the world...Ch. 2 - (a) A world record was set for the men's 100-m...Ch. 2 - Calculate the displacement and velocity at times...Ch. 2 - Calculate the displacement and velocity at times...Ch. 2 - A basketball referee tosses the ball straight up...Ch. 2 - A rescue helicopter is hovering over a person...Ch. 2 - A dolphin in an aquatic show jumps straight up out...Ch. 2 - A swimmer bounces straight up from a diving board...Ch. 2 - (a) Calculate the height of a cliff if it takes...Ch. 2 - A very strong, but inept, shot putter puts the...Ch. 2 - You throw a ball straight up with an initial...Ch. 2 - A kangaroo can jump over an object 2.50 m high....Ch. 2 - Standing at the base of one of the cliffs of Mt....Ch. 2 - An object is dropped from a height of 75.0 m above...Ch. 2 - There is a 250-m-high cliff at Half Dome in...Ch. 2 - A ball is thrown straight up. It passes a...Ch. 2 - Suppose you drop a rock into a dark well and,...Ch. 2 - A steel ball is dropped onto a hard floor from a...Ch. 2 - A coin is dropped from a hot-air balloon that is...Ch. 2 - A soft tennis ball is dropped onto a hard floor...Ch. 2 - (a) By taking the slope of the curve in Figure...Ch. 2 - Using approximate values, calculate the slope of...Ch. 2 - Using approximate values, calculate the slope of...Ch. 2 - By taking the slope of the curve in Figure 2.63,...Ch. 2 - Construct the displacement graph for the subway...Ch. 2 - (a) Take the slope of the curve in Figure 2.64 to...Ch. 2 - A graph of v(t) is shown for a world-class track...Ch. 2 - Figure 2.68 shows the displacement graph for a...
Additional Science Textbook Solutions
Find more solutions based on key concepts
1. An object is subject to two forces that do not point in opposite directions. Is it possible to choose their ...
College Physics: A Strategic Approach (3rd Edition)
According to the logistic growth equation dNdt=rN(KN)K (A) the number of individuals added per unit time is gre...
Campbell Biology (11th Edition)
Fill in the blanks: a. The wrist is also known as the _________ region. b. The arm is also known as the _______...
Human Anatomy & Physiology (2nd Edition)
In your own words, briefly distinguish between relative dates and numerical dates.
Applications and Investigations in Earth Science (9th Edition)
What is the difference between cellular respiration and external respiration?
Human Physiology: An Integrated Approach (8th Edition)
How can the freezing of water crack boulders?
Campbell Biology in Focus (2nd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Answer Part D). At what time is the object's velocity 10 m/s?arrow_forwardI have no clue why this problem is being rejected. I have submitted similar problems and have been answered. Can I please get some help with this. Thank you!arrow_forwardGiven the equation of the displacement x of a certain object at any time t x = 2t + 3t² + 10, in meter a. What is the velocity of the object at time t = 5 seconds? b. What is the acceleration of the object at time t = 10 seconds? Note: Velocity is the first derivative of displacement. Acceleration is the second derivative of displacement.arrow_forward
- Consider a coordinate system with Stephen's home as the origin for questions 7-9. Watch out for positive and negative signs! 7. Stephen rode his skateboard 5.0 km from his home to school. What is his displacement?arrow_forwardPlease answer question harrow_forwardA student drops a small black sphere alongside a vertical scale marked in centimetres. A number of flash photographs of the sphere are taken at 0.10s intervals: 9. .. This diagram is shown sideways- the first black dot is at 0 cm and the next at 4 cm. Figure 1.19 The first photograph is taken with the sphere at the top at time t = 0s. Explain how Figure 1.19 shows that the sphere reaches a constant speed. Determine the constant speed reached by the sphere. Determine the distance that the sphere has fallen when t 0.80 s. In a real photograph, each image of the sphere appears slightly blurred because each flash is not instantaneous and takes a time b of 0.0010s. Determine the absolute uncertainty that this gives in the position of each position of the black sphere when it is travelling at the final constant speed. Saggest whether this should be observable on the diagram. - 120 -130arrow_forward
- I need help on this?arrow_forwardA car moves along a straight road. It moves at a speed of 50 km/hr for 4 minutes, then during the next 4 minutes it gradually speeds up to 100 km/hr, continues at this speed for 4 minutes, then takes 4 minutes to gradually slow to a complete stop. Make a sketch like the figures in Section 1.2 of your textbook, marking dots for the position along the road every minute.arrow_forwardPlease help me answer number 4 with complete solutionarrow_forward
- A stone is thrown vertically upward with a speed of 17.6 m/sm/s from the edge of a cliff 75.0 mm high. A.)How much later does it reach the bottom of the cliff? Express your answer to three significant figures and include the appropriate units. B.)What is its speed just before hitting? Express your answer to three significant figures and include the appropriate units. C.)What total distance did it travel? Express your answer to three significant figures and include the appropriate units.arrow_forwardI looked at the motion diagram and thought it was representing an object accelerating to the right and getting faster. I thought A and B were right, but my first thought was that C looked like it could be moving to the right and slowing down, could you explain why this is wrong? I tend to get these types of questions wrong.arrow_forwardConcept Simulation 2.3 offers a useful review of the concepts central to this problem. An astronaut on a distant planet wants to determine its acceleration due to gravity. The astronaut throws a rock straight up with a velocity of +12.9 m/s and measures a time of 24.8 s before the rock returns to his hand. What is the acceleration (magnitude and direction) due to gravity on this planet? (positive = up, negative = down) Number -48.2 Units m/s^2arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
Position/Velocity/Acceleration Part 1: Definitions; Author: Professor Dave explains;https://www.youtube.com/watch?v=4dCrkp8qgLU;License: Standard YouTube License, CC-BY