College Physics
1st Edition
ISBN: 9781938168000
Author: Paul Peter Urone, Roger Hinrichs
Publisher: OpenStax College
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 2, Problem 20PE
An Olympic-class sprinter starts a race with an acceleration of 4.50 m/s2. (a) What is her speed 2.40 s later? (b) Sketch a graph of her position vs. time for this period.
Expert Solution & Answer
Trending nowThis is a popular solution!
Learn your wayIncludes step-by-step video
schedule02:31
Students have asked these similar questions
A turtle and a rabbit engage in a footrace over a distance of 4km. The rabbit runs 0.5km and then stops for a 90-min nap. Upon awakening, he remembers the race and runs twice as fast. Finishing the course in a total time of 1.75h, the rabbit wins the race. Calculate the average speed of the rabbit
One simple model for a person running the 100 m dash is to assume the sprinter runs with constant acceleration until reaching top speed, then maintains that speed through the finish line. If a sprinter reaches his top speed of 11.5 m/s in 2.24 s , what will be his total time? Express your answer in seconds.
A certain sprinter has a top speed of 11.0 m/s. If the sprinter starts from rest and accelerates at a constant rate, he is able to reach his top speed in a distance of 12.0 m. He is then able to maintain this top speed for the remainder of a 100 m race. (a) What is his time for the 100 m race? (b) In order to improve his time, the sprinter tries to decrease the distance required for him to reach his top speed.What must this distance be if he is to achieve a time of 10.0 s for the race?
Chapter 2 Solutions
College Physics
Ch. 2 - Give an example in which there are clear...Ch. 2 - Under what circumstances does distance traveled...Ch. 2 - Bacteria move back and f01th by using their...Ch. 2 - A student writes, "A bird that is diving for prey...Ch. 2 - What is the speed of the bird in Exercise 2.4?Ch. 2 - Acceleration is the change in velocity over time....Ch. 2 - A weather forecast states that the temperature is...Ch. 2 - Give an example (but not one from the text) of a...Ch. 2 - There is a distinction between average speed and...Ch. 2 - Does a car's odometer measure position or...
Ch. 2 - If you divide the total distance traveled on a car...Ch. 2 - How are instantaneous velocity and instantaneous...Ch. 2 - Is it possible for speed to be constant while...Ch. 2 - Is it possible for velocity to be constant while...Ch. 2 - Give an example in which velocity is zero yet...Ch. 2 - If a subway train is moving to the left (has a...Ch. 2 - Plus and minus signs are used in one-dimensional...Ch. 2 - What information do you need in order to choose...Ch. 2 - What is the last thing you should do when solving...Ch. 2 - What is the acceleration of a rock thrown straight...Ch. 2 - An object that is thrown straight up falls back to...Ch. 2 - Suppose you throw a rock nearly straight up at a...Ch. 2 - If an object is thrown straight up and air...Ch. 2 - The severity of a fall depends on your speed when...Ch. 2 - How many times higher could an astronaut jump on...Ch. 2 - (a) Explain how you can use the graph of position...Ch. 2 - (a) Sketch a graph of velocity versus time...Ch. 2 - (a) Explain how you can determine the acceleration...Ch. 2 - (a) Sketch a graph of acceleration versus time...Ch. 2 - Consider the velocity vs. time graph of a person...Ch. 2 - A cylinder is given a push and then rolls up an...Ch. 2 - Find the following for path A in Figure 2.59: (a)...Ch. 2 - Find the following for path B in Figure 2.59: (a)...Ch. 2 - Find the following for path C in Figure 2.59: (a)...Ch. 2 - Find the following for path D in Figure 2.59: (a)...Ch. 2 - (a) Calculate Earth's average speed relative to...Ch. 2 - A helicopter blade spins at exactly 100...Ch. 2 - The North American and European continents are...Ch. 2 - Land west of the San Andreas fault in southern...Ch. 2 - On May 26, 1934, a streamlined, stainless steel...Ch. 2 - Tidal friction is slowing the rotation of the...Ch. 2 - A student drove to the university from her home...Ch. 2 - The speed of propagation of the action potential...Ch. 2 - Conversations with astronauts on the lunar surface...Ch. 2 - A football quarterback runs 15.0 m straight down...Ch. 2 - The planetary model of the atom pictures electrons...Ch. 2 - A cheetah can accelerate from rest to a speed of...Ch. 2 - Professional Application Dr. John Paul Stapp was...Ch. 2 - A commuter backs her car out of her garage with an...Ch. 2 - Assume that an intercontinental ballistic missile...Ch. 2 - An Olympic-class sprinter starts a race with an...Ch. 2 - A well-thrown ball is caught in a well-padded...Ch. 2 - A bullet in a gun is accelerated from the firing...Ch. 2 - (a) A light-rail commuter train accelerates at a...Ch. 2 - While entering a freeway, a car accelerates from...Ch. 2 - At the end of a race, a runner decelerates from a...Ch. 2 - Professional Application: Blood is accelerated...Ch. 2 - In a slap shot, a hockey player accelerates the...Ch. 2 - A powerful motorcycle can accelerate from rest to...Ch. 2 - Freight trains can produce only relatively small...Ch. 2 - A fireworks shell is accelerated from rest to a...Ch. 2 - A swan on a lake gets airborne by flapping its...Ch. 2 - Professional Application: A woodpecker's brain is...Ch. 2 - An unwary football player collides with a padded...Ch. 2 - In World War II, there were several reported cases...Ch. 2 - Consider a grey squirrel falling out of a tree to...Ch. 2 - An express train passes through a station. It...Ch. 2 - Dragsters can actually reach a top speed of 145...Ch. 2 - A bicycle racer sprints at the end of a race to...Ch. 2 - In 1967, New Zealander Burt Munro set the world...Ch. 2 - (a) A world record was set for the men's 100-m...Ch. 2 - Calculate the displacement and velocity at times...Ch. 2 - Calculate the displacement and velocity at times...Ch. 2 - A basketball referee tosses the ball straight up...Ch. 2 - A rescue helicopter is hovering over a person...Ch. 2 - A dolphin in an aquatic show jumps straight up out...Ch. 2 - A swimmer bounces straight up from a diving board...Ch. 2 - (a) Calculate the height of a cliff if it takes...Ch. 2 - A very strong, but inept, shot putter puts the...Ch. 2 - You throw a ball straight up with an initial...Ch. 2 - A kangaroo can jump over an object 2.50 m high....Ch. 2 - Standing at the base of one of the cliffs of Mt....Ch. 2 - An object is dropped from a height of 75.0 m above...Ch. 2 - There is a 250-m-high cliff at Half Dome in...Ch. 2 - A ball is thrown straight up. It passes a...Ch. 2 - Suppose you drop a rock into a dark well and,...Ch. 2 - A steel ball is dropped onto a hard floor from a...Ch. 2 - A coin is dropped from a hot-air balloon that is...Ch. 2 - A soft tennis ball is dropped onto a hard floor...Ch. 2 - (a) By taking the slope of the curve in Figure...Ch. 2 - Using approximate values, calculate the slope of...Ch. 2 - Using approximate values, calculate the slope of...Ch. 2 - By taking the slope of the curve in Figure 2.63,...Ch. 2 - Construct the displacement graph for the subway...Ch. 2 - (a) Take the slope of the curve in Figure 2.64 to...Ch. 2 - A graph of v(t) is shown for a world-class track...Ch. 2 - Figure 2.68 shows the displacement graph for a...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Your bore cells, muscle cells, and skin cells look different because a. different kinds of genes are present in...
Campbell Essential Biology (7th Edition)
7. Both Tim and Jan (problem 6) have a widow’s peak (see Module 9.8), but Mike has a straight hairline. What ar...
Campbell Biology: Concepts & Connections (9th Edition)
1. If an object is not moving, does that mean that there are no forces acting on it? Explain.
College Physics: A Strategic Approach (3rd Edition)
Raw Oysters and Antacids: A Deadly Mix? The highly acidic environment of the stomach kills most bacteria before...
Microbiology with Diseases by Body System (5th Edition)
Body, Heal Thyself The precision of mitotic cell division is essential for repairing damaged tissues like those...
Biology: Life on Earth with Physiology (11th Edition)
2. The three ropes in FIGURE EX6.2 are tied to a small, very light ring. Two of the ropes are anchored to wa...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- here is my problem, I need help: One simple model for a person running the 100 mm dash is to assume the sprinter runs with constant acceleration until reaching top speed, then maintains that speed through the finish line. If a sprinter reaches his top speed of 11.1 m/sm/s in 2.64 ss , what will be his total time? Express your answer in seconds.arrow_forwardKathy tests her new sports car by racing with Stan, an experienced racer. Both start from rest, but Kathy leaves the starting line 1.00 s after Stan does. Stan moves with a constant acceleration of 3.1 m/s2 while Kathy maintains an acceleration of 4.95 m/s2. (a) Find the time at which Kathy overtakes Stan. s from the time Kathy started driving(b) Find the distance she travels before she catches him. m(c) Find the speeds of both cars at the instant she overtakes him. Kathy m/s Stan m/sarrow_forwardA drag car starts from rest and accelerates at a rate of 10.0-m/s2 for a distance of 400-m (~1/4 mile). (a) How long did it take the car to travel this distance? (b) What is the speed of the car at the 400-m mark?arrow_forward
- You are standing on a circular track that is 315 m long. You begin jogging at the start line and keep jogging until you complete one full lap and stop at the same point you started at. - What is the total distance you travel? - What is your final displacement? A world class sprinter ran 200 m in 21.75s. What was her average speed? (m/s)arrow_forwardA van merges onto a highway on-ramp with a velocity of 72 km/h and accelerates at a rate of 2.0 m/s² for 5.2 s. (a) What is the displacement of the van over this time? (b) What is the final velocity of the van?arrow_forwardA commuter backs her car out of her garage with a constant acceleration of 1.9 m/s2. Assume that her initial motion is in the positive direction. How long does it take her to reach a speed of 2.35 m/s in seconds? If she then brakes to a stop in 0.65 s, what is her acceleration in meters per square second?arrow_forward
- A simple model for a person running the 100 m dash is to assume the sprinter runs with constant acceleration until reaching top speed, then maintains that speed through the finish line. If a sprinter reaches his top speed of 11.2 m/s in 2.14 s, what will be his total time?arrow_forwardKathy tests her new sports car by racing with Stan, an experienced racer. Both start from rest, but Kathy leaves the starting line 1.00 s after Stan does. Stan moves with a constant acceleration of 3.6 m/s2 while Kathy maintains an acceleration of 5.25 m/s2. (a) Find the time at which Kathy overtakes Stan. s from the time Kathy started driving (b) Find the distance she travels before she catches him. (c) Find the speeds of both cars at the instant she overtakes him. Kathy m/s Stan m/s Need Help? Master It Read Itarrow_forwardOne simple model for a person running the 100 mm dash is to assume the sprinter runs with constant acceleration until reaching top speed, then maintains that speed through the finish line. If a sprinter reaches his top speed of 11.1 m/sm/s in 2.44 ss , what will be his total time?arrow_forward
- Freight trains can produce only relatively small accelerations and decelerations. a) What is the final velocity of a freight train that accelerates at a rate of 0.0418 m/s² for 6 min, starting with an initial velocity of 3.22 m/s?arrow_forwardA car with initial velocity 7.2 m/s undergoes a constant acceleration. What is the acceleration (in m/s2 ) if the velocity of the car is 9.5 m/s 6 seconds later? Make sure to include a minus sign, if appropriate.arrow_forwardA commuter backs her car out of her garage with an acceleration of 1.40 m/s². (a) How long does it take her to reach a speed of 2.00 m/s? (b) If she then brakes to a stop in 0.800 s, what is her acceleration?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
Speed Distance Time | Forces & Motion | Physics | FuseSchool; Author: FuseSchool - Global Education;https://www.youtube.com/watch?v=EGqpLug-sDk;License: Standard YouTube License, CC-BY