College Physics
1st Edition
ISBN: 9781938168000
Author: Paul Peter Urone, Roger Hinrichs
Publisher: OpenStax College
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
thumb_up100%
Chapter 2, Problem 19PE
Assume that an intercontinental ballistic missile goes from rest to a suborbital speed of 6.50 km/s in 60.0 s (the actual speed and time are classified). What is its average acceleration in m/s2 and in multiples of g (9.80 m/s2)?
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
An airplane covers a straight-line distance of 8.59 km in 30 .1 s, during which time it has a constant forward acceleration of 3.68 m/s2. What is the speed of the airplane, in m/s, at the beginning of the 30.1 s?
The acceleration of a particle is given by a = 2t-20, where a is in meters per second squared and t is in seconds. Determine the velocity
and displacement as functions of time. The initial displacement at t = 0 is so = -5 m, and the initial velocity is vo = 6 m/s. Once you have
determined the functions of time, answer the questions.
Questions: When t = 5.1 s,
S=
V =
a =
Mi
MI
i
m
m/s
m/s²
Problem 7: Assume that an intercontinental ballistic missile goes from rest to a suborbital speed of 6.95 km/s in 60.0 s (the actual speed and time are
classified).
What is its average acceleration, in multiples of g (9.80 m/s²)?
a =
Chapter 2 Solutions
College Physics
Ch. 2 - Give an example in which there are clear...Ch. 2 - Under what circumstances does distance traveled...Ch. 2 - Bacteria move back and f01th by using their...Ch. 2 - A student writes, "A bird that is diving for prey...Ch. 2 - What is the speed of the bird in Exercise 2.4?Ch. 2 - Acceleration is the change in velocity over time....Ch. 2 - A weather forecast states that the temperature is...Ch. 2 - Give an example (but not one from the text) of a...Ch. 2 - There is a distinction between average speed and...Ch. 2 - Does a car's odometer measure position or...
Ch. 2 - If you divide the total distance traveled on a car...Ch. 2 - How are instantaneous velocity and instantaneous...Ch. 2 - Is it possible for speed to be constant while...Ch. 2 - Is it possible for velocity to be constant while...Ch. 2 - Give an example in which velocity is zero yet...Ch. 2 - If a subway train is moving to the left (has a...Ch. 2 - Plus and minus signs are used in one-dimensional...Ch. 2 - What information do you need in order to choose...Ch. 2 - What is the last thing you should do when solving...Ch. 2 - What is the acceleration of a rock thrown straight...Ch. 2 - An object that is thrown straight up falls back to...Ch. 2 - Suppose you throw a rock nearly straight up at a...Ch. 2 - If an object is thrown straight up and air...Ch. 2 - The severity of a fall depends on your speed when...Ch. 2 - How many times higher could an astronaut jump on...Ch. 2 - (a) Explain how you can use the graph of position...Ch. 2 - (a) Sketch a graph of velocity versus time...Ch. 2 - (a) Explain how you can determine the acceleration...Ch. 2 - (a) Sketch a graph of acceleration versus time...Ch. 2 - Consider the velocity vs. time graph of a person...Ch. 2 - A cylinder is given a push and then rolls up an...Ch. 2 - Find the following for path A in Figure 2.59: (a)...Ch. 2 - Find the following for path B in Figure 2.59: (a)...Ch. 2 - Find the following for path C in Figure 2.59: (a)...Ch. 2 - Find the following for path D in Figure 2.59: (a)...Ch. 2 - (a) Calculate Earth's average speed relative to...Ch. 2 - A helicopter blade spins at exactly 100...Ch. 2 - The North American and European continents are...Ch. 2 - Land west of the San Andreas fault in southern...Ch. 2 - On May 26, 1934, a streamlined, stainless steel...Ch. 2 - Tidal friction is slowing the rotation of the...Ch. 2 - A student drove to the university from her home...Ch. 2 - The speed of propagation of the action potential...Ch. 2 - Conversations with astronauts on the lunar surface...Ch. 2 - A football quarterback runs 15.0 m straight down...Ch. 2 - The planetary model of the atom pictures electrons...Ch. 2 - A cheetah can accelerate from rest to a speed of...Ch. 2 - Professional Application Dr. John Paul Stapp was...Ch. 2 - A commuter backs her car out of her garage with an...Ch. 2 - Assume that an intercontinental ballistic missile...Ch. 2 - An Olympic-class sprinter starts a race with an...Ch. 2 - A well-thrown ball is caught in a well-padded...Ch. 2 - A bullet in a gun is accelerated from the firing...Ch. 2 - (a) A light-rail commuter train accelerates at a...Ch. 2 - While entering a freeway, a car accelerates from...Ch. 2 - At the end of a race, a runner decelerates from a...Ch. 2 - Professional Application: Blood is accelerated...Ch. 2 - In a slap shot, a hockey player accelerates the...Ch. 2 - A powerful motorcycle can accelerate from rest to...Ch. 2 - Freight trains can produce only relatively small...Ch. 2 - A fireworks shell is accelerated from rest to a...Ch. 2 - A swan on a lake gets airborne by flapping its...Ch. 2 - Professional Application: A woodpecker's brain is...Ch. 2 - An unwary football player collides with a padded...Ch. 2 - In World War II, there were several reported cases...Ch. 2 - Consider a grey squirrel falling out of a tree to...Ch. 2 - An express train passes through a station. It...Ch. 2 - Dragsters can actually reach a top speed of 145...Ch. 2 - A bicycle racer sprints at the end of a race to...Ch. 2 - In 1967, New Zealander Burt Munro set the world...Ch. 2 - (a) A world record was set for the men's 100-m...Ch. 2 - Calculate the displacement and velocity at times...Ch. 2 - Calculate the displacement and velocity at times...Ch. 2 - A basketball referee tosses the ball straight up...Ch. 2 - A rescue helicopter is hovering over a person...Ch. 2 - A dolphin in an aquatic show jumps straight up out...Ch. 2 - A swimmer bounces straight up from a diving board...Ch. 2 - (a) Calculate the height of a cliff if it takes...Ch. 2 - A very strong, but inept, shot putter puts the...Ch. 2 - You throw a ball straight up with an initial...Ch. 2 - A kangaroo can jump over an object 2.50 m high....Ch. 2 - Standing at the base of one of the cliffs of Mt....Ch. 2 - An object is dropped from a height of 75.0 m above...Ch. 2 - There is a 250-m-high cliff at Half Dome in...Ch. 2 - A ball is thrown straight up. It passes a...Ch. 2 - Suppose you drop a rock into a dark well and,...Ch. 2 - A steel ball is dropped onto a hard floor from a...Ch. 2 - A coin is dropped from a hot-air balloon that is...Ch. 2 - A soft tennis ball is dropped onto a hard floor...Ch. 2 - (a) By taking the slope of the curve in Figure...Ch. 2 - Using approximate values, calculate the slope of...Ch. 2 - Using approximate values, calculate the slope of...Ch. 2 - By taking the slope of the curve in Figure 2.63,...Ch. 2 - Construct the displacement graph for the subway...Ch. 2 - (a) Take the slope of the curve in Figure 2.64 to...Ch. 2 - A graph of v(t) is shown for a world-class track...Ch. 2 - Figure 2.68 shows the displacement graph for a...
Additional Science Textbook Solutions
Find more solutions based on key concepts
True or false? Some trails are considered vestigial because they existed long ago.
Biological Science (6th Edition)
13. A 50 kg box hangs from rope. What is the tension in the rope if:
a. The box is at rest?
b. The box moves ...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
1. Write a single sentence, using no more than 25 words, to summarize each of the following cellular processes...
Human Anatomy & Physiology (2nd Edition)
WRITE ABOUT A THEME: INTERACTIONS Animal life changed greatly during the Cambrian explosion, with some groups e...
Campbell Biology (11th Edition)
Some organizations are starting to envision a sustainable societyone in which each generation inherits sufficie...
Campbell Essential Biology (7th Edition)
Q1. What is the empirical formula of a compound with the molecular formula
Chemistry: A Molecular Approach (4th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A motorist drives north for 37.0 minutes at 83.0 km/h and then stops for 15.0 minutes. He then continues north, traveling 130 km in 1.70 h. Whats the total displacement in km? And whats the average velocity in km/hr?arrow_forwardAn object is moving in the x-direction with some initial velocity. After a time of 4.06 seconds, the object has a velocity of 23.1 m/s i. If its acceleration was at a constant rate of 3.81 m/s2i over this time, what displacement did it undergo?arrow_forwardThe acceleration of a particle is given by a = 5t - 25, where a is in meters per second squared and t is in seconds. Determine the velocity and displacement as functions of time. The initial displacement at t = 0 is so = -2 m, and the initial velocity is vo = 6 m/s. After you have the general expressions, evaluate these expressions at the indicated times. Answers: Att = 3.6 s, V = m/s S= m, Att = 14.9 s, s = i m, V = i m/sarrow_forward
- An insect takes 8.03 minutes to walk 19.9 m toward the south along a deserted highway. A driver stops and picks up the insect. The driver takes the insect to a town 1.62 km to the north with an average speed of 15.6 m/s. What is the magnitude of the average velocity of the insect for its entire journey? Express your answer to 3 significant figures in meters/second.arrow_forwardA snowboarder starts from rest at the top of a double black diamond hill. As she rides down the slope, GPS coordinates are used to determine her displacement as a function of time: x = 0.5t3 + t2 + 2t, where x and t are expressed in meter and seconds, respectively. Determine the acceleration (m/s²) when t=5 seconds.arrow_forwardA particle’s velocity along the x-axis is described byv(t) = A t + B t2,where t is in seconds, v is in meters per second, A = 1.14 m/s2, and B = -0.56 m/s3. What is the acceleration, in meters per second squared, of the particle at time t0 = 1.0 s? What is the displacement, in meters, of the particle between times t0 = 1.0 s and t1 = 3.0 s? What is the distance traveled, in meters, by the particle between times t0 = 1.0 s and t1 = 3.0 s?arrow_forward
- An object moves in one dimensional motion with constant acceleration a = 4.5 m/s². At time t = 0 s, the object is at xo = 2.9 m and has an initial velocity of vo = 4 m/s. How far will the object move before it achieves a velocity of v = 7 m/s? Your answer should be accurate to the nearest 0.1 m.arrow_forwardDr. John Paul Stapp was a U.S. Air Force officer who studied the effects of extreme deceleration on the human body. On December 10, 1954, Stapp rode a rocket sled, accelerating from rest to a top speed of 282 m/s (1015 km/h) in 5.00 s, and was brought jarringly back to rest in only 1.40 s!Calculate the magnitude of his average acceleration during the first part of his motion. Express your answer in multiples of g by taking its ratio to 9.80 m/s2. calculate the magnitude his average deceleration during the second part of his motion. Express your answer in multiples of g by taking its ratio to 9.80 m/s2.arrow_forwardA snowboarder starts from rest at the top of a double black diamond hill. As she rides down the slope, GPS coordinates are used to determine her displacement as a function of time: x = 0.25t3 + t2 + 2t, where x and t are expressed in feet and seconds, respectively. x is measured along the surface of the hill. Determine the position, velocity, and acceleration of the boarder when t = 7.5 seconds. The position, velocity, and acceleration of the boarder are ____ft, ____ft/s, and ____ft/s2, respectively when t = 7.5 seconds.arrow_forward
- A human-powered vehicle (HPV) team wants to model the acceleration during the 260-m sprint race (the first 60 m is called a flying start) using a = A – Cv, where a is acceleration in m/s2? and v is the velocity in m/s. From wind tunnel testing, they found that C = 0.0012 m-1. Knowing that the cyclist starts from rest and is going 110 km/h at the 260-meter mark, what is the value of A? POSE HULMANarrow_forwardA student holds a ball 1.55 meters above the ground and drops it. Her friend uses a stopwatch and measures a time of 0.57 seconds for the ball to hit the ground. The ball accelerates due to gravity. Using the equation y = 1/2??2 where y is the height, to compute g , calculate the acceleration of the ball.arrow_forwardThe acceleration of a particle is given by a = 2t - 28, where a is in meters per second squared and t is in seconds. Determine the velocity and displacement as functions of time. The initial displacement at t = 0 is so = 7 m, and the initial velocity is vo = -2 m/s. After you have the general expressions, evaluate these expressions at the indicated times. Answers: At t = 4.3 s, S= At t = 13.7 s, S = i i m, V = i m, V = i m/s m/sarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
Position/Velocity/Acceleration Part 1: Definitions; Author: Professor Dave explains;https://www.youtube.com/watch?v=4dCrkp8qgLU;License: Standard YouTube License, CC-BY