![Biochemistry](https://www.bartleby.com/isbn_cover_images/9781305961135/9781305961135_largeCoverImage.gif)
Biochemistry
9th Edition
ISBN: 9781305961135
Author: Mary K. Campbell, Shawn O. Farrell, Owen M. McDougal
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 2, Problem 40RE
MATHEMATICAL A catalog in the lab has a recipe for preparing 1 L of a TRIS buffer at 0.0500 M and with pH 8.0: dissolve 2.02 g of TRIS (free base,
Expert Solution & Answer
![Check Mark](/static/check-mark.png)
Trending nowThis is a popular solution!
![Blurred answer](/static/blurred-answer.jpg)
Students have asked these similar questions
What is the standard free energy change (in kJ/mole) of the spontaneous reaction between Oxygen and NADH to form H2O2 and NAD+?
Redox Chemistry:
Give standard free energy changes expected for the following reactions:-Succinate -> fumarate (using FAD/FADH2)-Oxaloacetate -> Malate (using NAD/NADH)-NADH --> NAD+ (using FMN/FMNH2)-CoQ --> CoQH2 (using Cytochrome C)
Give examples of balanced redox reactions that match the following:-Catabolic-Anabolic-Oxidative-Reductive
Chapter 2 Solutions
Biochemistry
Ch. 2 - REFLECT AND APPLY Why is water necessary for life?Ch. 2 - REFLECT AND APPLY Contemplate biochemistry if...Ch. 2 - RECALL What is a van der Waals force?Ch. 2 - RECALL What is an induced dipole?Ch. 2 - RECALL What is a salt bridge?Ch. 2 - RECALL Under what circumstance is a molecule that...Ch. 2 - REFLECT AND APPLY Which would you think would be a...Ch. 2 - RECALL List the three types of van der Waals...Ch. 2 - RECALL A hydrogen bond is a special case of what...Ch. 2 - REFLECT AND APPLY Why do you think that most...
Ch. 2 - RECALL What are some macromolecules that have...Ch. 2 - BIOCHEMICAL CONNECTIONS How are hydrogen bonds...Ch. 2 - REFLECT AND APPLY Rationalize the fact that...Ch. 2 - REFLECT AND APPLY Draw three examples of types of...Ch. 2 - RECALL What are the requirements for molecules to...Ch. 2 - REFLECT AND APPLY Many properties of acetic acid...Ch. 2 - REFLECT AND APPLY How many water molecules could...Ch. 2 - REFLECT AND APPLY Both RNA and DNA have negatively...Ch. 2 - RECALL Identify the conjugate acids and bases in...Ch. 2 - RECALL Identify conjugate acids and bases in the...Ch. 2 - REFLECT AND APPLY Aspirin is an acid with a pKa of...Ch. 2 - RECALL Why does the pH change by one unit if the...Ch. 2 - MATHEMATICAL Calculate the hydrogen ion...Ch. 2 - MATHEMATICAL Calculate the hydrogen ion...Ch. 2 - MATHEMATICAL Calculate the hydroxide ion...Ch. 2 - RECALL Define the following: (a) Acid dissociation...Ch. 2 - REFLECT AND APPLY Look at Figure 2.17. If you did...Ch. 2 - BIOCHEMICAL CONNECTIONS List the criteria used to...Ch. 2 - BIOCHEMICAL CONNECTIONS What is the relationship...Ch. 2 - MATHEMATICAL What is the [CH3COO]/[CH3COOH] ratio...Ch. 2 - MATHEMATICAL What is the [CH3COO]/[CH3COOH] ratio...Ch. 2 - MATHEMATICAL What is the ratio of TRIS/TRIS-H+ in...Ch. 2 - MATHEMATICAL What is the ratio of HEPES/HEPES-H+...Ch. 2 - MATHEMATICAL How would you prepare 1 L of a 0.050...Ch. 2 - MATHEMATICAL The buffer needed for Question 35 can...Ch. 2 - MATHEMATICAL Calculate the pH of a buffer solution...Ch. 2 - MATHEMATICAL Calculate the pH of a buffer solution...Ch. 2 - MATHEMATICAL Calculate the pH of a buffer solution...Ch. 2 - MATHEMATICAL A catalog in the lab has a recipe for...Ch. 2 - MATHEMATICAL If you mix equal volumes of 0.1 M HCl...Ch. 2 - MATHEMATICAL What would be the pH of the solution...Ch. 2 - MATHEMATICAL If you have 100 mL of a 0.10 M TRIS...Ch. 2 - MATHEMATICAL What would be the pH of the solution...Ch. 2 - MATHEMATICAL Show that, for a pure weak acid in...Ch. 2 - MATHEMATICAL What is the ratio of concentrations...Ch. 2 - BIOCHEMICAL CONNECTIONS You need to carry out an...Ch. 2 - Prob. 48RECh. 2 - Prob. 49RECh. 2 - BIOCHEMICAL CONNECTIONS Which of the buffers shown...Ch. 2 - Prob. 51RECh. 2 - REFLECT AND APPLY In Section 2-4, we said that at...Ch. 2 - MATHEMATICAL Define buffering capacity. How do the...Ch. 2 - BIOCHEMICAL CONNECTIONS If you wanted to make a...Ch. 2 - BIOCHEMICAL CONNECTIONS We usually say that a...Ch. 2 - RECALL What quality of zwitterions makes them...Ch. 2 - Prob. 57RECh. 2 - Prob. 58RECh. 2 - Prob. 59RECh. 2 - BIOCHEMICAL CONNECTIONS A frequently recommended...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, biochemistry and related others by exploring similar questions and additional content below.Similar questions
- If there are 20uM of a GLUT2 transporter on the surface of a cell, each able to move 8 per second, and 50mM glucose outside of the cell, what is the flux into the cell in mM/sec?arrow_forwardA transporter is responsible for antiporting calcium and glucose. The transporter brings glucose into the cell and sends calcium out of the cell. If blood [calcium] = 2.55mM and intracellular [calcium] = 7uM, blood [glucose] = 5.2mM, and intracellular [glucose] = 40uM, what is the free energy of transport? Assume a membrane potential of 62mV (negative inside).arrow_forwardAn ATP-coupled transporter is used to import 1 phosphate from the extracellular environment. Intracellular phosphate exists at 65mM, while it is 2mM outside.Assume a free energy change of ATP hydrolysis of -42.7 kJ/mol. What is the net free energy change of the coupled reaction? Assume a membrane potential of 70mV.arrow_forward
- Another transporter brings 3 chloride ions into the cell. Outside, chloride has a concentration of 107mM, and 4mM inside the cell. Assuming a membrane potential of 62mV (negative inside), what is the free energy of transport of these ions?arrow_forwardFor the Oxaloacetate -> Malate reaction, assume the normal ratio of NAD/NADH, what is the maximum ratio of Malate/Oxaloacetate that will allow reaction progress?arrow_forwardA particular particle is trying to cross a membrane by simple diffusion from a high concentration of 20mM to a low concentration of 20uM. If a membrane is 15uM in width, and the diffusion coefficient of the particle is 5 uM/sec, what is the influx in uM/sec?arrow_forward
- Mechanisms: 1. Give a full arrow-pushing mechanism for the hydrolysis of the gamma phosphate of ATP by an ATPase. 2. Give a full arrow pushing mechanism of the spontaneous redox reaction between NAD+/NADH and oxaloacetate/malate.arrow_forwardDefine the difference between primary and secondary active transport. Is one preferable to another?arrow_forwardWhich B vitamin is responsible for generating the following:- FAD/FMN-NAD/NADH/NADP/NADPH-Coenzyme Aarrow_forward
- What is the free energy change of an NADH mediated reduction of acetaldehyde to ethanol if blood ethanol is 0.2% by volume, and [Acetaldehyde] = 9uM. Assume the ratio of NAD/NADH is the same as discussed in class.arrow_forwardWhat is the role of each redox cofactor in the cell? Be specific about subcellular localization, etcarrow_forwardFatty Acids: 1. Draw the structure of a phosphatidylinositol with two different monounsaturated tails. a. Give the lipid numbers for each tail.b. What is the net charge of this phospholipid? 2. Draw a sphingolipid with neutral net charge and a 16:2, w-3, w-5 tail// 3. Which of the above two lipids would exhibit a higher Tm? Justify your answer. 4. Under which of the following conditions would FRAP recovery time be the fastest? Explain your answers. -Cell with a membrane predominantly composed of saturated fatty acids below the Tm vs membrane with monounsaturated fatty acids. -Membrane includes cholesterol vs membrane lacking cholesterol.-Membrane below the Tm vs Above the Tm-Membrane consisting of 16:1 fatty acid tails integrated into sphingolipids vs glycerophospholipidsarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- BiochemistryBiochemistryISBN:9781305961135Author:Mary K. Campbell, Shawn O. Farrell, Owen M. McDougalPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305961135/9781305961135_smallCoverImage.gif)
Biochemistry
Biochemistry
ISBN:9781305961135
Author:Mary K. Campbell, Shawn O. Farrell, Owen M. McDougal
Publisher:Cengage Learning
Biomolecules - Protein - Amino acids; Author: Tutorials Point (India) Ltd.;https://www.youtube.com/watch?v=ySNVPDHJ0ek;License: Standard YouTube License, CC-BY