Concept explainers
(a)
Interpretation:
How much heavier a proton is than an electron has to be calculated.
Concept Introduction:
Electrons:
Electrons are constituents of atom and it is the negatively charged subatomic particle. It is known as the elementary particle because it cannot be broken down into smaller particles.
Charge of the electron
Mass of the electron
Protons:
Hydrogen atoms had the smallest mass to charge ratios, indicating that they must be the positively charged fundamental particles of atomic structure. Such a particle is called a proton.
Charge of the proton
Mass of the proton
(b)
Interpretation:
The difference between charge of a proton and an electron has to be determined.
Concept Introduction:
Refer to part (a)
Want to see the full answer?
Check out a sample textbook solutionChapter 2 Solutions
Chemistry: The Molecular Science
- In a reproduction of the Millikan oil-drop experiment, a student obtains the following values for the charges on nine different oil droplets. (a) Based on these data alone, what is your best estimate of the number of electrons on each of the above droplets? (Hint: Begin by considering differences in charges between adjacent data points, and see into what groups these are categorized.) (b) Based on these data alone, what is your best estimate of the charge on the electron? (c) Is it conceivable that the actual charge is half the charge you calculated in (b)? What evidence would help you decide one way or the other?arrow_forwardWhat evidence led to the conclusion that cathode rays had a negative charge?arrow_forwardTwo basic laws of chemistry are the law of conservation of mass and the law of constant composition. Which of these laws (if any) do the following statements illustrate? (a) Lavoisier found that when mercury(ll) oxide, HgO, decomposes, the total mass of mercury (Hg) and oxygen formed equals the mass of mercury(ll) oxide decomposed. (b) Analysis of the calcium carbonate found in the marble mined in Carrara, Italy, and in the stalactites of the Carlsbad Caverns in New Mexico gives the same value for the percentage of calcium in calcium carbonate. (c) Hydrogen occurs as a mixture of two isotopes, one of which is twice as heavy as the other.arrow_forward
- There are 1.699 1022 atoms in 1.000 g of chlorine. Assume that chlorine atoms are spheres of radius 0.99 and that they are lined up side by side in a 0.5-g sample. How many miles in length is the line of chlorine atoms in the sample?arrow_forwardhe vigorous reaction between aluminum and iodine gives the balanced equation: :math>2Al(s)+3I2(s)2AlI2(s). mg src=Images/HTML_99425-9-2QAP_image001.jpg alt="" align="top"/> at do the coefficients in this balanced chemical equation tell us about the proportions in which these substances react on a macroscopic (mole) basis?arrow_forwardSuppose that mercury forms a perfect spherical droplet with a diameter of 5.0 mm. (a) What is the volume of the mercury droplet in cubic centimeters (cm3)? (b) If the density of mercury is 13.6 g/cm3, calculate the mass of the droplet. (c) How many mercury atoms are present in the droplet? (Volume of sphere = (4/3)3.14r3)arrow_forward
- The radius of an atom of gold (Au) is about 1.35 Å. (a) Express this distance in nanometers (nm) and in picometers (pm) (b) How many gold atoms would have to be lined up to span 1.0 mm? (c) If the atom is assumed to be a sphere, what is the volume in cm3 of a single Au atom?arrow_forwardAntimony has many uses, including infrared devices and as part of an alloy in lead storage batteries. The element has two naturally occurring isotopes, one with mass 120.904 amu, the other with mass 122.904 amu.(a) Enter the notation for each isotope. antimony−121 antimony−123 (b) The atomic mass of antimony is 121.8 amu. Use this value to calculate the percent abundance of each isotope. % antimony−121 % antimony−123arrow_forward2a.arrow_forward
- The element oxygen has three naturally occurring isotopes, with 8,9, and 10 neutrons in the nucleus, respectively. (a) write the full chemical symbols for these three isotopes. (b) Describe the similarities and differences between the three kinds of atoms of oxygen.arrow_forward(a) Atoms are very small compared to objects on the macroscopic scale. The radius of a nickel atom is 125 pm. What is this value in meters and in centimeters? cm -23 (b) The mass of a single nickel atom is 9.75×10 g. Suppose enough Ni atoms were lined up like beads on a string to span a distance of 31.3 cm (12 inches). How many atoms would be required? atoms What mass in grams of Ni would be used? Could you weigh out this amount of nickel using a typical laboratory balance? (c) Taking the density of nickel metal to be 8.91 g/cm, calculate the mass of metal needed to form a piece of Ni wire with the same length as the distance in b, but with a diameter of 1.00 mm. Hint: The volume of a cylinder is n times its radius squared times its height. (V = nr h) How many nickel atoms does this represent? atomsarrow_forwardThe following diagram represents a chemical reaction in which the red spheres are oxygen atoms and the blue spheres are nitrogen atoms. (a) Write the chemical formulas for the reactants and products. (b) Write a balanced equation for the reaction. (c) Is the diagram consistent with the law of conservation of mass?arrow_forward
- Introductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage Learning