Chemistry: The Molecular Science
5th Edition
ISBN: 9781285199047
Author: John W. Moore, Conrad L. Stanitski
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 2, Problem 106QRT
Interpretation Introduction
Interpretation:
From the given symbols
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
There are quite a few pieces of information we can glean from a chemical formula. The first is the mass of that formula. In looking at the periodic table, we know that each element has its own mass. When we combine that information with how we interpret how many of each element there is in the formula that we just went over, we can calculate the mass of the compound. Using glucose as an example:
C6H12O6 tells us that glucose has 6 carbons, 12 hydrogens and 6 oxygens. On the periodic table, carbon has a mass of 12 g, hydrogen has a mass of 1 g, and oxygen has a mass of 16 g (I've rounded for ease. There will be times you use the entire mass provided on the table and times you won't -you'll know when).
C = 6 x 12g = 72g
H = 12 X 1g = 12 g
O = 6 X 16g = 96g
Add these values together and you get 180 g so glucose has a mass of 180 g.
Calculate the mass of H2SO4.
Question 2. Tracing isotopes. Place asterisks indicating the position of the isotope in the molecules
shown to the right – if the product contains no isotope label . circle "NONE".
CH,OH
ČH2
A)
or NONE
он
Но
ČH2
OH
ÓH
čo-SCOA
CO-
COO
H2C*
B)
Но —с—н
H-C-čoO
or NONE
Н—с—н
Но —с —н
CO-
*COO
CoO
*c=0
ONE turn of the TCA cycle
C)
or NONE
H-C-H
H-C-H
COO
COO
› On another planet, the isotopes of titanium have the given natural abundances.
Abundance
Mass (u)
78.600%
45.95263
19.700%
47.94795
1.700%
49.94479
Isotope
46
Ti
48
Ti
50
Ti
What is the average atomic mass of titanium on that planet?
average atomic mass=
u
Chapter 2 Solutions
Chemistry: The Molecular Science
Ch. 2.1 - When you comb your hair on a dry day, your hair...Ch. 2.2 - Prob. 2.1PSPCh. 2.2 - Prob. 2.2PSPCh. 2.2 - Prob. 2.2CECh. 2.2 - Prob. 2.3PSPCh. 2.3 - Prob. 2.4PSPCh. 2.3 - A student in your chemistry class tells you that...Ch. 2.3 - Prob. 2.5PSPCh. 2.3 - Prob. 2.4CECh. 2.3 - Prob. 2.5CE
Ch. 2.4 - Prob. 2.6PSPCh. 2.4 - Prob. 2.6CECh. 2.4 - Prob. 2.7PSPCh. 2.4 - Prob. 2.8PSPCh. 2.5 - Prob. 2.9PSPCh. 2.5 - Prob. 2.10PSPCh. 2.6 - Prob. 2.7CECh. 2.7 - Prob. 2.8CECh. 2.7 - Prob. 2.11PSPCh. 2.7 - Prob. 2.9ECh. 2.8 - Prob. 2.12PSPCh. 2.8 - Prob. 2.10ECh. 2.9 - Prob. 2.11ECh. 2.9 - Prob. 2.12ECh. 2.9 - Prob. 2.13CECh. 2.9 - According to Table 2.10, five constitutional...Ch. 2.11 - Calculate (a) the amount of Ti atoms in 4.00 g...Ch. 2.11 - Prob. 2.15CECh. 2.11 - Prob. 2.16ECh. 2.11 - Prob. 2.17CECh. 2.11 - Prob. 2.18ECh. 2.11 - Prob. 2.19ECh. 2.11 - Prob. 2.14PSPCh. 2.11 - Prob. 2.15PSPCh. 2.11 - Prob. 2.16PSPCh. 2.11 - Prob. 2.20CECh. 2.12 - Prob. 2.17PSPCh. 2.12 - Prob. 2.18PSPCh. 2.12 - Prob. 2.21ECh. 2.12 - Hydrazine is composed of 87.42% nitrogen and...Ch. 2.12 - Prob. 2.20PSPCh. 2.12 - Prob. 2.22ECh. 2 - An isotope of an element contains 63 protons and...Ch. 2 - Prob. IISPCh. 2 - Prob. IIISPCh. 2 - Dioxathion, a pesticide, contains carbon,...Ch. 2 - Prob. 1QRTCh. 2 - Prob. 2QRTCh. 2 - Prob. 3QRTCh. 2 - Prob. 4QRTCh. 2 - Prob. 5QRTCh. 2 - Prob. 6QRTCh. 2 - Prob. 7QRTCh. 2 - Prob. 8QRTCh. 2 - Prob. 9QRTCh. 2 - Prob. 10QRTCh. 2 - Match these by placing the correct notation in the...Ch. 2 - Prob. 12QRTCh. 2 - Prob. 13QRTCh. 2 - Prob. 14QRTCh. 2 - Prob. 15QRTCh. 2 - Prob. 16QRTCh. 2 - Prob. 17QRTCh. 2 - Prob. 18QRTCh. 2 - Prob. 19QRTCh. 2 - Prob. 20QRTCh. 2 - Prob. 21QRTCh. 2 - Prob. 22QRTCh. 2 - Prob. 23QRTCh. 2 - Prob. 24QRTCh. 2 - Prob. 25QRTCh. 2 - Prob. 26QRTCh. 2 - Prob. 27QRTCh. 2 - Prob. 28QRTCh. 2 - Argon has three naturally occurring isotopes:...Ch. 2 - Prob. 30QRTCh. 2 - Prob. 31QRTCh. 2 - Prob. 32QRTCh. 2 - Prob. 33QRTCh. 2 - Prob. 34QRTCh. 2 - Prob. 35QRTCh. 2 - Prob. 36QRTCh. 2 - Prob. 37QRTCh. 2 - Prob. 38QRTCh. 2 - Prob. 39QRTCh. 2 - Prob. 40QRTCh. 2 - Prob. 41QRTCh. 2 - Prob. 42QRTCh. 2 - Prob. 43QRTCh. 2 - Prob. 44QRTCh. 2 - Prob. 45QRTCh. 2 - Prob. 46QRTCh. 2 - Prob. 47QRTCh. 2 - Prob. 48QRTCh. 2 - Prob. 49QRTCh. 2 - Prob. 50QRTCh. 2 - Prob. 51QRTCh. 2 - Prob. 52QRTCh. 2 - Prob. 53QRTCh. 2 - Prob. 54QRTCh. 2 - Prob. 55QRTCh. 2 - Prob. 56QRTCh. 2 - Prob. 57QRTCh. 2 - Prob. 58QRTCh. 2 - Prob. 59QRTCh. 2 - Prob. 60QRTCh. 2 - Prob. 61QRTCh. 2 - Prob. 62QRTCh. 2 - Prob. 63QRTCh. 2 - Prob. 64QRTCh. 2 - Prob. 65QRTCh. 2 - Prob. 66QRTCh. 2 - Prob. 67QRTCh. 2 - Prob. 68QRTCh. 2 - Prob. 69QRTCh. 2 - Prob. 70QRTCh. 2 - Prob. 71QRTCh. 2 - Prob. 72QRTCh. 2 - Prob. 73QRTCh. 2 - Prob. 74QRTCh. 2 - If you have a ring that contains 1.94 g gold,...Ch. 2 - You have a pure sample of the antiseptic...Ch. 2 - You have a pure sample of apholate, C12H24N9P3, a...Ch. 2 - Prob. 78QRTCh. 2 - Prob. 79QRTCh. 2 - Prob. 80QRTCh. 2 - Prob. 81QRTCh. 2 - Prob. 82QRTCh. 2 - Prob. 83QRTCh. 2 - Prob. 84QRTCh. 2 - Prob. 85QRTCh. 2 - Prob. 86QRTCh. 2 - Prob. 87QRTCh. 2 - Prob. 88QRTCh. 2 - Prob. 89QRTCh. 2 - Prob. 90QRTCh. 2 - Quinine (molar mass = 324.41 g/mol) is used as a...Ch. 2 - Prob. 92QRTCh. 2 - The mineral uraninite is a uranium oxide that is...Ch. 2 - Carbonic anhydrase, an important enzyme in...Ch. 2 - Nitrogen fixation in the root nodules of peas and...Ch. 2 - Disilane, Si2Hx, contains 90.28% silicon by mass....Ch. 2 - Chalky, white crystals in mineral collections are...Ch. 2 - A well-known reagent in analytical chemistry,...Ch. 2 - Prob. 99QRTCh. 2 - Prob. 100QRTCh. 2 - The density of a solution of sulfuric acid is...Ch. 2 - Prob. 102QRTCh. 2 - Prob. 103QRTCh. 2 - Prob. 104QRTCh. 2 - Prob. 105QRTCh. 2 - Prob. 106QRTCh. 2 - Prob. 107QRTCh. 2 - The Statue of Liberty in New York harbor is made...Ch. 2 - Prob. 109QRTCh. 2 - Prob. 110QRTCh. 2 - Prob. 111QRTCh. 2 - Prob. 112QRTCh. 2 - Prob. 113QRTCh. 2 - Prob. 114QRTCh. 2 - Prob. 115QRTCh. 2 - Prob. 116QRTCh. 2 - Prob. 117QRTCh. 2 - Prob. 118QRTCh. 2 - Prob. 119QRTCh. 2 - Prob. 120QRTCh. 2 - Prob. 121QRTCh. 2 - Prob. 122QRTCh. 2 - Prob. 123QRTCh. 2 - Prob. 124QRTCh. 2 - Prob. 125QRTCh. 2 - Prob. 126QRTCh. 2 - Prob. 127QRTCh. 2 - Prob. 128QRTCh. 2 - Prob. 129QRTCh. 2 - The element bromine is Br2, so the mass of a Br2...Ch. 2 - Uranium is used as a fuel, primarily in the form...Ch. 2 - Prob. 132QRTCh. 2 - Hemoglobin is an iron-containing protein (molar...Ch. 2 - There are three naturally occurring isotopes of...Ch. 2 - Prob. 135QRTCh. 2 - Prob. 136QRTCh. 2 - Prob. 137QRTCh. 2 - An adult human body contains 6.0 L blood, which...Ch. 2 - Prob. 139QRTCh. 2 - Prob. 140QRTCh. 2 - Prob. 141QRTCh. 2 - The present average concentration (mass percent)...Ch. 2 - Prob. 144QRTCh. 2 - A 4.22-g mixture of calcium chloride and sodium...Ch. 2 - A certain metal, M, forms two oxides, M2O and MO....Ch. 2 - If you heat Al with an element from Group 6A, an...Ch. 2 - Prob. 2.ACPCh. 2 - The age of the universe is unknown, but some...Ch. 2 - Prob. 2.CCPCh. 2 - Prob. 2.DCPCh. 2 - Prob. 2.ECP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Which of the following is true about an individual atom? Explain. a. An individual atom should be considered to be a solid. b.An individual atom should be considered to be a liquid. c. An individual atom should be considered to be a gas. d. The state of the atom depends on which element it is. e. An individual atom cannot be considered to be a solid, liquid, or gas. Justify your choice, and for choices you did not pick, explain what is wrong with them.arrow_forwardThe element europium exists in nature as two isotopes: 151Eu has a mass of 150.9196 amu, and 153Eu has a mass of 152.9209 amu. The average atomic mass of europium is 151.96 amu. a. Calculate the relative abundance of the two europium isotopes. b. Graph each fractional abundance value as a y-axis value in association with its corresponding mass value on the x-axis. Starting from each x-axis value, where y = 0, draw a vertical line up to the fractional abundance value. The result will approximate the type of visual graph a mass spectrometer would yield for europium in the 150155 amu range.arrow_forwardLook around you and identify several objects that you think are probably made from polymers.arrow_forward
- The element europium exists in nature as two isotopes: 151Eu has a mass of 150.9196 u and 153Eu has a mass of 152.9209 u. The average atomic mass of europium is 151.96 u. Calculate the relative abundance of the two europium isotopes.arrow_forwardClick on the site (http://openstaxcollege.org/l/16PhetAtomMass) and select the Mix Isotopes tab, hide the Percent Composition and Average Atomic Mass boxes, and then select the element boron. Write the symbols of the isotopes of boron that are shown as naturally occurring in significant amounts. Predict the relative amounts (percentages) of these boron isotopes found in nature. Explain the reasoning behind your choice. Add isotopes to the black box to make a mixture that matches your prediction in (b). You may drag isotopes from their bins or click on More and then move the sliders to the appropriate amounts. Reveal the Percent Composition and Average Atomic Mass boxes. How well does your mixture match with your prediction? If necessary, adjust the isotope amounts to match your prediction. Select Nature’s mix of isotopes and compare it to your prediction. How well does your prediction compare with the naturally occurring mixture? Explain. If necessary, adjust your amounts to make them match Nature’s amounts as closely as possible. 21. Repeat Exercise 2.20 using an element that has three naturally occurring isotopes.arrow_forwardClick on the site (http://openstaxcollege.org/l/16PhetAtomMass) and select the Mix Isotopes tab, hide the Percent Composition and Average Atomic Mass boxes, and then select the element boron. Write the symbols of the isotopes of boron that are shown as naturally occurring in significant amounts. Predict the relative amounts (percentages) of these boron isotopes found in nature. Explain the reasoning behind your choice. Add isotopes to the black box to make a mixture that matches your prediction in (b). You may drag isotopes from their bins or click on More and then move the sliders to the appropriate amounts. Reveal the Percent Composition and Average Atomic Mass boxes. How well does your mixture match with your prediction? If necessary, adjust the isotope amounts to match your prediction. Select Nature’s mix of isotopes and compare it to your prediction. How well does your prediction compare with the naturally occurring mixture? Explain. If necessary, adjust your amounts to make them match Nature’s amounts as closely as possible.arrow_forward
- 2.94 Use a molecular level description to distinguish between LDPE and HDPE.arrow_forwardIf you have a ring that contains 1.94 g gold, calculate how many gold atoms are in the ring.arrow_forward2.71 Use the web to determine the amount of low-density polyethylene and high-density polyethylene produced annually in the United States. Which uses predominate in the applications of these two materials?arrow_forward
- A small crystal of CaCl2 that weighs 0.12 g contains 6.5 1020 formula units of CaCl2. What is the total number of ions (cations and anions) that make up this crystal?arrow_forwardThe mass spectrum of bromine (Br2) consists of three peaks with the following characteristics: Mass (u) Relative Size 157.84 0.2534 159.84 0.5000 161.84 0.2466 How do you interpret these data?arrow_forwardTwo elements, R and Q, combine to form two binary compounds. In the first compound, 14.0 g of R combines with 3.00 g of Q. In the second compound, 7.00 g of R combines with 4.50 g of Q. Show that these data are in accord with the law of multiple proportions. If the formula of the second compound is RQ, what is the formula of the first compound?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningWorld of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage Learning
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
World of Chemistry, 3rd edition
Chemistry
ISBN:9781133109655
Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCoste
Publisher:Brooks / Cole / Cengage Learning
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
Step by Step Stoichiometry Practice Problems | How to Pass ChemistryMole Conversions Made Easy: How to Convert Between Grams and Moles; Author: Ketzbook;https://www.youtube.com/watch?v=b2raanVWU6c;License: Standard YouTube License, CC-BY