Concept explainers
A driver in Massachusetts was sent to traffic court for speeding. The evidence against the driver was that a policewoman observed the driver’s car alongside a second car at a certain moment, and the policewoman had already clocked the second car going faster than the speed limit. The driver argued, “The second car was passing me. I was not speeding.” The judge ruled against the driver because, in the judge’s words, “If two cars were side by side, both of you were speeding.” If you were a lawyer representing the accused driver, how would you argue this case?
Want to see the full answer?
Check out a sample textbook solutionChapter 2 Solutions
University Physics with Modern Physics, Volume 2 (Chs. 21-37); Mastering Physics with Pearson eText -- ValuePack Access Card (14th Edition)
Additional Science Textbook Solutions
Physics: Principles with Applications
Lecture- Tutorials for Introductory Astronomy
College Physics
Essential University Physics: Volume 2 (3rd Edition)
Applied Physics (11th Edition)
University Physics (14th Edition)
- Two locomotives 70 kilometers apart are travelling on the same track towards each other, Engine A moves at 22 kilometers per hour east and engine B moves at 13 kilometersper hour west. At the instant both trains begin moving, an annoying mutant fly beginsflying from engine A towards engine B at 33 kilometers per hour . The instant it touchesB, it turns around and flies back. It goes on this way until the two locomotives collideand the mutant fly is finally squashed. So, before its untimely demise, a) what is the total distance the fly flew? b) the time it took till it was eliminated and c) the average velocity of the fly? how can i find this pleasearrow_forwardAs a city planner, you receive complaints from local residents about the safety of nearby roads and streets. One complaint concerns a stop sign at the corner of Pine Street and 1st Street. Residents complain that the speed limit in the area (55 mph) is too high to allow vehicles to stop in time. Under normal conditions this is not a problem, but when fog rolls in visibility can reduce to only 155 ft. Since fog is a common occurrence in this region, you decide to investigate. The state highway department states that the effective coefficient of friction between a rolling wheel and asphalt ranges between 0.536 and 0.599, whereas the effective coefficient of friction between a skidding (locked) wheel and asphalt ranges between 0.350 and 0.480. Vehicles of all types travel on the road, from small VW bugs weighing 1410 lb to large trucks weighing 8250 lb. Considering that some drivers will brake properly when slowing down and others will skid to stop, calculate the minimum and maximum…arrow_forwardAs a city planner, you receive complaints from local residents about the safety of nearby roads and streets. One complaint concerns a stop sign at the corner of Pine Street and 1st Street. Residents complain that the speed limit in the area (55 mph) is too high to allow vehicles to stop in time. Under normal conditions this is not a problem, but when fog rolls in visibility can reduce to only 155 ft. Since fog is a common occurrence in this region, you decide to investigate. The state highway department states that the effective coefficient of friction between a rolling wheel and asphalt ranges between 0.689 and 0.770, whereas the effective coefficient of friction between a skidding (locked) wheel and asphalt ranges between 0.450 and 0.617. Vehicles of all types travel on the road, from small VW bugs weighing 1210 lb to large trucks weighing 8640 lb. Considering that some drivers will brake properly when slowing down and others will skid to stop, calculate the minimum and maximum…arrow_forward
- As a city planner, you receive complaints from local residents about the safety of nearby roads and streets. One complaint concerns a stop sign at the corner of Pine Street and 1st Street. Residents complain that the speed limit in the area (55 mph) is too high to allow vehicles to stop in time. Under normal conditions this is not a problem, but when fog rolls in visibility can reduce to only 155 ft. Since fog is a common occurrence in this region, you decide to investigate. The state highway department states that the effective coefficient of friction between a rolling wheel and asphalt ranges between 0.536 and 0.599, whereas the effective coefficient of friction between a skidding (locked) wheel and asphalt ranges between 0.350 and 0.480. Vehicles of all types travel on the road, from small VW bugs weighing 1310 lb to large trucks weighing 8.40 x 10° lb. Considering that some drivers will brake properly when slowing down and others will skid to stop, calculate the minimum and maximum…arrow_forwardA red train traveling at 72 km/h and a green train traveling at 144 km/h are headed toward each other along a straight, level track.When they are 950 m apart, each engineer sees the other’s train and applies the brakes.The brakes slow each train at the rate of 1.0 m/s2. Is there a collision? If so, answer yes and give the speed of the red train and the speed of the green train at impact, respectively. If not, answer no and give the separation between the trains when they stoparrow_forwardA red train traveling at 72 miles/hour (mph) and a green train traveling at 100 mph are headed toward one another along a straight, level track. When they are 2500 feet apart, each engineer sees the other's train and applies the brakes. The brakes decelerates each train at the rate of 2.0 meters per second squared. Is their a collision? If so, what is the speed of each train at impact? If not, what is the separation between the trains when they stop? (Non-ro...arrow_forward
- A red train travelling at 72 km/h and a green train travelling at 144 km/h are headed toward each other along a straight, level track. When they are 950 m apart, each engineer sees the other's train and applies the brakes. The brakes slow each train at the rate of 1.0 m s 2. Is there a collision? If so, answer yes [in the first box] and give the speed of the red train and the speed of the green train at impact, respectively. [in the second and third box - give answers as integers, and in units: m/s but without the units] If not, answer no [in the first box] and give the distance travelled by the red train and the distance travelled by the green train when they stop, respectively. [in the second and third box - give answers as integers in units m but without the unit]arrow_forwardCar A was traveling east at high speed when it collided at point O with car B , which was traveling north at 45 mi/h. Car C , which was traveling west at 60 mi/h, was 32 ft east and 10 ft north of point O at the time of the collision. Because the pavement was wet, the driver of car C could not prevent his car from sliding into the other two cars, and the three cars, stuck together, kept sliding until they hit the utility pole p. Knowing that the weights of cars A, B, and C are, respectively, 3000 lb, 2600 lb, and 2400 lb, and neglecting the forces exerted on the cars by the wet pavement, solve the problems indicated.Knowing that the coordinates of the utility pole are xp= 46 ft and yp = 59 ft, determine (a) the time elapsed from the first collision to the stop at P,(b) the speed of car A.arrow_forwardA driver in Spain is on a street that has a posted speed limit of vm=75 km/hr and is traveling above the speed limit by vc=28 km/hr. A SUV pulls out of a garage into the street in front of the driver d=24 m in front if of the driver and stops there. The driver immediately brakes and begins decelerating at a rate of ab=4.9 m/s^2. How fast in meters per second is the driver traveling when he hits the SUV in front of him?arrow_forward
- Ima Rilla Saari is cruising at 28.0 m/s down Lake Avenue and through the forest preserve. She notices a deer jump into the road at a location 62.0 m in front of her. Ima first reacts to the event, then slams on her brakes and decelerates at -8.10 m/s2, and ultimately stops a picometer in front of the frozen deer. What is Ima's reaction time? (i.e., how long did it take Ima to react to the event prior to decelerating?)arrow_forwardI'm struggling with this question:You are stopped at a red light, waiting for it to turn green. At the instant the light turns green, a truck in the next lane passes you, traveling at a constant velocity of 15 m/s. One second later, you begin accelerating with a constant a = 6.0 m/s^2.(1) How much time does it take for you to catch up to the other car? I don't get how I'm supposed to find how much time it will take to catch up from just constant acceleration and constant velocity. Any hints that you can give me?arrow_forwardDr. John Paul Stapp was a U.S. Air Force officer who studied the effects of extreme deceleration on the human body. On December 10, 1954, Stapp rode a rocket sled, accelerating from rest to a top speed of 282 m/s (1015 km/h) in 5.00 s, and was brought jarringly back to rest in only 1.40 s!Calculate the magnitude of his average acceleration during the first part of his motion. Express your answer in multiples of g by taking its ratio to 9.80 m/s2. calculate the magnitude his average deceleration during the second part of his motion. Express your answer in multiples of g by taking its ratio to 9.80 m/s2.arrow_forward
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON