
Concept explainers
(a)
To classify:
(a)

Explanation of Solution
In the periodic table, elements increase in metallic nature when approaching the “left” side of the table. The nonmetal nature increase as we go from left to right.
The most common physical characteristics for metals are given as follow:
- Mostly solids at room temperature
- Malleable
- Brittle and metallic luster
- Conducts electricity and heat efficiently
- The most common physical characteristics for nonmetals are given as follow:
- Mostly liquids or gases at room temperature
- Poor heat and electricity conductors
- No metallic luster
- Brittle if solid only.
There is a third set of elements, which are considered to be metalloids, due to the nature of both, metal and nonmetal.
- Semiconductors of electricity
- Mostly solids
- Slightly malleable and brittles
As stated before, the metallic nature of elements increases to the top/left of the periodic table, and decreases as we go to the bottom right side of the table.
Nonmetals will, therefore, increase in nonmetallic nature when going bottom-right and decrease when going top-left side.
Metalloids are defined as having both properties, therefore, they must be found between the metals and nonmetals.
Now, identify the element by the “Si” symbol. This is Silicon. It is a metalloid.
To classify:

Explanation of Solution
In the periodic table, elements increase in metallic nature when approaching the “left” side of the table. The nonmetal nature increase as we go from left to right.
The most common physical characteristics for metals are given as follow:
- Mostly solids at room temperature
- Malleable
- Brittle and metallic luster
- Conducts electricity and heat efficiently
The most common physical characteristics for nonmetals are given as follow:
Mostly liquids or gases at room temperature
- Poor heat and electricity conductors
- No metallic luster
- Brittle if solid only.
There is a third set of elements, which are considered to be metalloids, due to the nature of both, metal and nonmetal.
Semiconductors of electricity
- Mostly solids
- Slightly malleable and brittles
As stated before, the metallic nature of elements increases to the top/left of the periodic table, and decreases as we go to the bottom right side of the table.
Nonmetals will, therefore, increase in nonmetallic nature when going bottom-right and decrease when going top-left side.
Metalloids are defined as having both properties, therefore, they must be found between the metals and nonmetals.
Now, identify the element by the “Zn” symbol. This is Zinc. It is a metal.
To classify:

Explanation of Solution
In the periodic table, elements increase in metallic nature when approaching the “left” side of the table. The nonmetal nature increase as we go from left to right.
The most common physical characteristics for metals are given as follow:
- Mostly solids at room temperature
- Malleable
- Brittle and metallic luster
- Conducts electricity and heat efficiently
The most common physical characteristics for nonmetals are given as follow:
Mostly liquids or gases at room temperature
- Poor heat and electricity conductors
- No metallic luster
- Brittle if solid only.
There is a third set of elements, which are considered to be metalloids, due to the nature of both, metal and nonmetal.
Semiconductors of electricity
- Mostly solids
- Slightly malleable and brittles
As stated before, the metallic nature of elements increases to the top/left of the periodic table, and decreases as we go to the bottom right side of the table.
Nonmetals will, therefore, increase in nonmetallic nature when going bottom-right and decrease when going top-left side.
Metalloids are defined as having both properties, therefore, they must be found between the metals and nonmetals.
Now, identify the element by the “B” symbol. This is Boron. It is a metalloid.
To classify:

Explanation of Solution
In the periodic table, elements increase in metallic nature when approaching the “left” side of the table. The nonmetal nature increase as we go from left to right.
The most common physical characteristics for metals are given as follow:
- Mostly solids at room temperature
- Malleable
- Brittle and metallic luster
- Conducts electricity and heat efficiently
The most common physical characteristics for nonmetals are given as follow:
- Mostly liquids or gases at room temperature
- Poor heat and electricity conductors
- No metallic luster
- Brittle if solid only.
There is a third set of elements, which are considered to be metalloids, due to the nature of both, metal and nonmetal.
- Semiconductors of electricity
- Mostly solids
- Slightly malleable and brittles
As stated before, the metallic nature of elements increases to the top/left of the periodic table, and decreases as we go to the bottom right side of the table.
Nonmetals will, therefore, increase in nonmetallic nature when going bottom-right and decrease when going top-left side.
Metalloids are defined as having both properties, therefore, they must be found between the metals and nonmetals.
Now, identify the element by the “N” symbol. This is Nitrogen. It is a nonmetal.
To classify:

Explanation of Solution
In the periodic table, elements increase in metallic nature when approaching the “left” side of the table. The nonmetal nature increase as we go from left to right.
The most common physical characteristics for metals are given as follow:
- Mostly solids at room temperature
- Malleable
- Brittle and metallic luster
- Conducts electricity and heat efficiently
The most common physical characteristics for nonmetals are given as follow:
- Mostly liquids or gases at room temperature
- Poor heat and electricity conductors
- No metallic luster
- Brittle if solid only.
There is a third set of elements, which are considered to be metalloids, due to the nature of both, metal and nonmetal.
Semiconductors of electricity
- Mostly solids
- Slightly malleable and brittles
As stated before, the metallic nature of elements increases to the top/left of the periodic table, and decreases as we go to the bottom right side of the table.
Nonmetals will, therefore, increase in nonmetallic nature when going bottom-right and decrease when going top-left side.
Metalloids are defined as having both properties, therefore, they must be found between the metals and nonmetals.
Now, identify the element by the “K” symbol. This is Potassium. It is a metal.
To classify:

Explanation of Solution
In the periodic table, elements increase in metallic nature when approaching the “left” side of the table. The nonmetal nature increase as we go from left to right.
The most common physical characteristics for metals are given as follow:
- Mostly solids at room temperature
- Malleable
- Brittle and metallic luster
- Conducts electricity and heat efficiently
The most common physical characteristics for nonmetals are given as follow:
Mostly liquids or gases at room temperature
- Poor heat and electricity conductors
- No metallic luster
- Brittle if solid only.
There is a third set of elements, which are considered to be metalloids, due to the nature of both, metal and nonmetal.
Semiconductors of electricity
- Mostly solids
- Slightly malleable and brittles
As stated before, the metallic nature of elements increases to the top/left of the periodic table, and decreases as we go to the bottom right side of the table.
Nonmetals will, therefore, increase in nonmetallic nature when going bottom-right and decrease when going top-left side.
Metalloids are defined as having both properties, therefore, they must be found between the metals and nonmetals.
Now, identify the element by the “S” symbol. This is Sulfur. It is a nonmetal.
In order to select if this is a metal, nonmetal or metalloid, one must identify the element and find it in the periodic table.
Want to see more full solutions like this?
Chapter 2 Solutions
Chemistry for Engineering Students
- Propose a synthesis of 1-butanamine from the following: (a) a chloroalkane of three carbons (b) a chloroalkane of four carbonsarrow_forwardSelect the stronger base from each pair of compounds. (a) H₂CNH₂ or EtzN (b) CI or NH2 NH2 (c) .Q or EtzN (d) or (e) N or (f) H or Harrow_forward4. Provide a clear arrow-pushing mechanism for each of the following reactions. Do not skip proton transfers, do not combine steps, and make sure your arrows are clear enough to be interpreted without ambiguity. a. 2. 1. LDA 3. H3O+ HOarrow_forward
- b. H3C CH3 H3O+ ✓ H OHarrow_forward2. Provide reagents/conditions to accomplish the following syntheses. More than one step is required in some cases. a. CH3arrow_forwardIdentify and provide an explanation that distinguishes a qualitative and quantitative chemical analysis. Provide examples.arrow_forward
- Identify and provide an explanation of the operational principles behind a Atomic Absorption Spectrometer (AAS). List the steps involved.arrow_forwardInstructions: Complete the questions in the space provided. Show all your work 1. You are trying to determine the rate law expression for a reaction that you are completing at 25°C. You measure the initial reaction rate and the starting concentrations of the reactions for 4 trials. BrO³¯ (aq) + 5Br¯ (aq) + 6H* (aq) → 3Br₂ (l) + 3H2O (l) Initial rate Trial [BrO3] [H*] [Br] (mol/L) (mol/L) | (mol/L) (mol/L.s) 1 0.10 0.10 0.10 8.0 2 0.20 0.10 0.10 16 3 0.10 0.20 0.10 16 4 0.10 0.10 0.20 32 a. Based on the above data what is the rate law expression? b. Solve for the value of k (make sure to include proper units) 2. The proposed reaction mechanism is as follows: i. ii. BrО¸¯ (aq) + H+ (aq) → HBrO3 (aq) HBrO³ (aq) + H* (aq) → H₂BrO3* (aq) iii. H₂BrO³* (aq) + Br¯ (aq) → Br₂O₂ (aq) + H2O (l) [Fast] [Medium] [Slow] iv. Br₂O₂ (aq) + 4H*(aq) + 4Br(aq) → 3Br₂ (l) + H2O (l) [Fast] Evaluate the validity of this proposed reaction. Justify your answer.arrow_forwardе. Д CH3 D*, D20arrow_forward
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoIntroduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage Learning
- World of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning




