Principles of Heat Transfer (Activate Learning with these NEW titles from Engineering!)
8th Edition
ISBN: 9781305387102
Author: Kreith, Frank; Manglik, Raj M.
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 2, Problem 2.53P
Determine the rate of heat transfer per meter length from a 5-cm-OD pipe at
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The rectangular wall of a furnace consists of 3in. fire clay brick surrounded by 0.25in. of steel on the outside. There are six 0.25in.diameter mild steel bolts per square foot connecting the steel and the brick. The furnace is surrounded by 70°F air (with a film coefficient of 1.65 Btu/hr-ft²-°F), while the inner surface of the brick is maintained at a constant 1000°F. Determine the heat flux per square foot through this wall?
Need answer ASAP! Thank you
Water at 5°C is being used to cool apples from an initial temperature of 25° to 10°C. Thewater flow over the surface of the apple creates a convective heat-transfer coefficientof 10 W/(m2-K). Assume the apple can be described as a sphere with an 8 cm diameterand the geometric center is to be reduced to 10°C. The apple properties include thermalconductivity of 0.4 W/(m-K), specific heat of 3.950 kJ/(kg-K), and density of 940 kg/m3
a. Determine the time that the apples must be exposed to the water.b. If the apple is submerged only for 2 hours, what will be its center temperature?
A can of engine oil with a length of 150 mm and a diameter of 100 mm is placed vertically in the trunk of a car. In a hot summer day, the temperature in the trunk is 43°C. If the surface temperature of the can is 17°C, determine heat transfer rate from the can surface. Neglect the heat transfer from the ends of the can.
Chapter 2 Solutions
Principles of Heat Transfer (Activate Learning with these NEW titles from Engineering!)
Ch. 2 - A plane wall, 7.5 cm thick, generates heat...Ch. 2 -
2.2 A small dam, which is idealized by a large...Ch. 2 - 2.3 The shield of a nuclear reactor is idealized...Ch. 2 - A plane wall 15 cm thick has a thermal...Ch. 2 - 2.5 Derive an expression for the temperature...Ch. 2 - A plane wall of thickness 2L has internal heat...Ch. 2 - 2.7 A very thin silicon chip is bonded to a 6-mm...Ch. 2 - 2.9 In a large chemical factory, hot gases at 2273...Ch. 2 - 2.14 Calculate the rate of heat loss per foot and...Ch. 2 - 2.15 Suppose that a pipe carrying a hot fluid with...
Ch. 2 - Prob. 2.16PCh. 2 - Estimate the rate of heat loss per unit length...Ch. 2 - The rate of heat flow per unit length q/L through...Ch. 2 - A 2.5-cm-OD, 2-cm-ID copper pipe carries liquid...Ch. 2 - A cylindrical liquid oxygen (LOX) tank has a...Ch. 2 - Show that the rate of heat conduction per unit...Ch. 2 - Derive an expression for the temperature...Ch. 2 - Heat is generated uniformly in the fuel rod of a...Ch. 2 - 2.29 In a cylindrical fuel rod of a nuclear...Ch. 2 - 2.30 An electrical heater capable of generating...Ch. 2 - A hollow sphere with inner and outer radii of R1...Ch. 2 - 2.34 Show that the temperature distribution in a...Ch. 2 -
2.38 The addition of aluminum fins has been...Ch. 2 - The tip of a soldering iron consists of a 0.6-cm-...Ch. 2 - One end of a 0.3-m-long steel rod is connected to...Ch. 2 - Both ends of a 0.6-cm copper U-shaped rod are...Ch. 2 - 2.42 A circumferential fin of rectangular cross...Ch. 2 - 2.43 A turbine blade 6.3 cm long, with...Ch. 2 - 2.44 To determine the thermal conductivity of a...Ch. 2 - 2.45 Heat is transferred from water to air through...Ch. 2 - 2.46 The wall of a liquid-to-gas heat exchanger...Ch. 2 - Prob. 2.47PCh. 2 - The handle of a ladle used for pouring molten lead...Ch. 2 - 2.50 Compare the rate of heat flow from the bottom...Ch. 2 - 2.51 Determine by means of a flux plot the...Ch. 2 - Prob. 2.52PCh. 2 - Determine the rate of heat transfer per meter...Ch. 2 - Prob. 2.54PCh. 2 - 2.55 A long, 1-cm-diameter electric copper cable...Ch. 2 - Prob. 2.56PCh. 2 - Prob. 2.57PCh. 2 - Prob. 2.58P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A computer circuit board dissipates 0.1 KW from one side over an area 300 mm by 200 mm. A small turbo fan cools the computer with flow speed of 12 m / s. It is of utmost importance that the circuit board is kept within acceptable temperature range. Using the average Nusselt number relationship Nuav = (0.05Rez08 – 310) Pr3. You are required to calculate: (i) The surface temperature of the board for an air temperature of 30 °c. Assume: Ambient pressure of 1 bar, R = 287 J/ kg K, Cp = 1 kJ / kg K, k = 0.03 W / m K, and u = 2 x 10% kg/m sarrow_forwardHeat Transfer Lesson The water will be heated from 10 (Degrees centigrade oC) to 90 (Degrees centigrade oC) while flowing through a smooth pipe with 1.5 cm inner diameter and 7 meters length.The entire surface of the pipe is equipped with an electric heater, which ensures uniform heating throughout.The outer surface of the heater is well insulated and therefore all heat generated in the heater in continuous operation is transferred to the water in the pipe.If the system provides 6 Liter / minute flow rate of hot water. (Thermophysical properties of water at 50 oC:ρ = 988 m3/kg, k= 0.6305 W/m oC, cp=4181 J/kg oC, Pr=3.628, μ= 0.0005471 kg/m.s ) a)Find the power of the resistance heater [W]. b)Calculate the inner surface temperature [oC] of the pipe at the outlet. c)Find the pressure drop [Pa]. d)Find the pump power [W] required to overcome this pressure drop.arrow_forwardIn a concentrated solar power plant, molten salt tank is used to store the thermal energy from the sun during the day. The tank wall thickness is 3cm containing molten salt at a temperature of 390 degree Celsius. There is atmospheric air outside the tank at a temperature of 30 degree Celsius. If the surface temperature of the wall on the hot side is 370 degree Celsius and on the cold side is 230 degree Celsius. Calculate the heat flux as a result of heat loss from the molten salt to the atmospheric air if the thermal conductivity of the wall is O.2 W/(m-K)? O 933 W/m2 O 1066 W/m2 O 1333 W/m2 O 2400 W/m²arrow_forward
- Consider a steam pipe of length 15 ft, inner radius 2 in., outer radius 2.4 in., and thermal conductivity 7.2 Btu/hr-ft-°F. Steam is flowing through the pipe at an average temperature of 250°F, and the average convection heat transfer coefficient on the inner surface is given to be 1.25 Btu/hr-ft2-"F. If the average temperature on the outer surfaces of the pipe is 160*F, determine the rate of heat loss from the steam through the pipe. ANSWER: Btu/hrarrow_forwardConvection 2. For a boiling process such as shown in Figure below, the ambient temperature Tin Newton's law of cooling is replaced by the saturation temperature of the fluid Tsat. Consider a situation where the heat flux from the hot plate is q=20 x 105 W/m². If the fluid is water at atmospheric pressure and the convection heat transfer coefficient is hw=20 x 103 W/m2 K, determine the upper surface temperature of the plate, Ts, w. In an effort to minimize the surface temperature, a technician proposes replacing the water with a dielectric fluid whose saturation temperature is Teat, d=52 °C. If the heat transfer coefficient associated with the dielectric fluid is h = 3 x 103 W/m2 K, will the technician's plan work?arrow_forwardA 10 cm outer diameter pipe carrying saturated steam at a temperature of 195C is lagged to 20 cm diameter with magnesia and further lagged with laminated asbestos to 25 cm diameter. The entire pipe is further protected by a layer of canvas. If the temperature under the canvas is 20°C, find the mass of steam condensed in 8 hrs on a 100m length of pipe and interface temperature. Take thermal conductivity of magnesia as 0.07 W/m – K and that of asbestos as 0.082 W/m – k. Neglect the thermal conductivity of the pipe material. The latent heat of steam for given conditions can be taken as 1951 kJ/kg–K.arrow_forward
- Electronic components are attached under a thin square plate and the all the energy dissipated by components is removed by water flow over the top surface. The plate length is 0.18 m and the thermophysical properties of water may be approximated as: k = 0.620 W/mK, Pr = 5.2, ν = 0.96x10-6 m2/s Water flow velocity is 1.5 m/s and the amount of dissipated energy (q’’) from the components can be estimated as uniformly distributed heat flux of 80000 W/m2. One approach to analyze this problem is to assume the plate has an isothermal temperature as a boundary condition. Calculate the average isothermal plate temperature in °C for the given conditions blank If the boundary layer is ‘tripped’ and the flow over the plate is completely turbulent; what will be the average isothermal plate temperature in °C for this case?arrow_forwardA domestic radiator is 2500mm long and 750mm high and has a surface temperature of 86°C. If the mean room temperature is 18°C, determine the rate of heat output from the radiator.arrow_forwardi need the answer quicklyarrow_forward
- A 15-cm-diameter horizontal cylinder has a surface temperature that is maintained at 120°C. Water at 40°C is flowing across the cylinder with a velocity of 0.2 m/s.a) Calculate the heat transfer rate per unit length if the water is flowing (a) upward and (b)downward.b) Determine which direction (upward or downward water flow direction) has better heat transfer performance and how much percentage of increase of the heat transfer rate in the preferred direction.arrow_forwardThe boiling temperature of nitrogen at atmospheric pressure at sea level (1 atm) is -196°C. Therefore, nitrogen is commonly used in low temperature scientific studies since the temperature of liquid nitrogen in a tank open to the atmosphere will remain constant at -196°C until the liquid nitrogen in the tank is depleted. Any heat transfer to the tank will result in the evaporation of some liquid nitrogen, which has a heat of vaporization of 198 kJ/kg and a density of 810 kg/m3 at 1 atm. Consider a 3-m-diameter spherical tank initially filled with liquid nitrogen at 1 atm and 196°C. The tank is exposed to 22°C ambient air with a heat transfer coefficient of 22 W/m2 · °C. The temperature of the thin-shelled spherical tank is observed to be almost the same as the temperature of the nitrogen inside. Disregarding any radiation heat exchange, determine the rate of evaporation of the liquid nitrogen in the tank as a result of the heat transfer from the ambient air in kg/sec. Answer in…arrow_forwardWater at 5°C is being used to cool apples from an initial temperature of 25° to 10°C. Thewater flow over the surface of the apple creates a convective heat-transfer coefficientof 15 W/(m2-K). Assume the apple can be described as a sphere with a 10 cm diameterand the geometric center is to be reduced to 10°C. The apple properties include thermalconductivity of 0.45 W/(m-K), specific heat of 3.950 kJ/(kg-K), and density of 940 kg/m3.a. Determine the time that the apples must be exposed to the water.b. If the apple is submerged only for 2 hours, what will be its center temperature?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Heat Transfer – Conduction, Convection and Radiation; Author: NG Science;https://www.youtube.com/watch?v=Me60Ti0E_rY;License: Standard youtube license