Fundamentals of Electromagnetics with Engineering Applications
1st Edition
ISBN: 9780470105757
Author: Stuart M. Wentworth
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 2, Problem 2.33P
A cylindrical pipe with a 1.00–cm wall thickness and an inner radius of 4.00 cm is centered on the z-axis and has an evenly distributed 3.00 C of charge per meter length of pipe. Plot
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Gauss law can be used if the structure carrying the charge is asymmetric around the point.
Select one:
True
False
ion
electromagnetic field)I want a detailed solution because my teacher changes the numbers. I want a detailed solution. Understand the solution
Question 84
A parallel plate capacitor of area A cm² and separating distance 'a' cm is dipped in ethyl alcohol up
to a depth of a/2. Given the dielectric constant €, of ethyl alcohol to be 25, the ratio of
capacitance after dipping to that before dipping would be
Chapter 2 Solutions
Fundamentals of Electromagnetics with Engineering Applications
Ch. 2 - Given P(4, 2, 1) and APQ=2ax+4ay+6az, find the...Ch. 2 - Prob. 2.2PCh. 2 - Prob. 2.3PCh. 2 - Suppose Q1(0.0,-3.0m,0.0)=4.0nC,...Ch. 2 - Prob. 2.5PCh. 2 - Suppose 10.0nC point charges are located on the...Ch. 2 - Four 1.00nC point charges are located at...Ch. 2 - A 20.0nC point charge exists at...Ch. 2 - Prob. 2.9PCh. 2 - Convert the following points from Cartesian to...
Ch. 2 - Prob. 2.11PCh. 2 - Prob. 2.12PCh. 2 - Prob. 2.13PCh. 2 - A 20.0–cm–long section of copper pipe has a...Ch. 2 - A line charge with charge density 2.00nC/m exists...Ch. 2 - You are given two z–directed line charges of...Ch. 2 - Suppose you have a segment of line charge of...Ch. 2 - A segment of line charge L=10.nC/m exists on the...Ch. 2 - In free space, there is a point charge Q=8.0nC at...Ch. 2 - Prob. 2.20PCh. 2 - Sketch the following surfaces and find the total...Ch. 2 - Consider a circular disk in the x–y plane of...Ch. 2 - Suppose a ribbon of charge with density S exists...Ch. 2 - Sketch the following volumes and find the total...Ch. 2 - You have a cylinder of 4.00–in diameter and...Ch. 2 - Consider a rectangular volume with...Ch. 2 - Prob. 2.27PCh. 2 - Prob. 2.28PCh. 2 - Given D=2a+sinazC/m2, find the electric flux...Ch. 2 - Suppose the electric flux density is given by...Ch. 2 - Prob. 2.31PCh. 2 - A cylindrical pipe with a 1.00–cm wall thickness...Ch. 2 - Prob. 2.34PCh. 2 - Prob. 2.35PCh. 2 - A thick–walled spherical shell, with inner...Ch. 2 - Prob. 2.37PCh. 2 - Determine the charge density at the point...Ch. 2 - Given D=3ax+2xyay+8x2y3azC/m2, (a) determine the...Ch. 2 - Suppose D=6cosaC/m2. (a) Determine the charge...Ch. 2 - Suppose D=r2sinar+sincosaC/m2. (a) Determine the...Ch. 2 - Prob. 2.42PCh. 2 - A surface is defined by the function 2x+4y21nz=12....Ch. 2 - For the following potential distributions, use the...Ch. 2 - A 100nC point charge is located at the origin. (a)...Ch. 2 - Prob. 2.46PCh. 2 - Prob. 2.47PCh. 2 - Prob. 2.48PCh. 2 - Suppose a 6.0–m–diameter ring with charge...Ch. 2 - Prob. 2.50PCh. 2 - Prob. 2.51PCh. 2 - The typical length of each piece of jumper wire on...Ch. 2 - A 150–m length of AWG–22 (0.644 mm diameter)...Ch. 2 - Determine an expression for the power dissipated...Ch. 2 - Find the resistance per unit length of a stainless...Ch. 2 - A nickel wire of diameter 5.0 mm is surrounded by...Ch. 2 - Prob. 2.57PCh. 2 - A 20nC point charge at the origin is embedded in...Ch. 2 - Suppose the force is very carefully measured...Ch. 2 - The potential field in a material with r=10.2 is...Ch. 2 - In a mineral oil dielectric, with breakdown...Ch. 2 - Prob. 2.62PCh. 2 - For z0,r1=9.0 and for z0,r2=4.0. If E1 makes a 300...Ch. 2 - Prob. 2.64PCh. 2 - Consider a dielectric–dielectric charge–free...Ch. 2 - A 1.0–cm–diameter conductor is sheathed with a...Ch. 2 - Prob. 2.67PCh. 2 - For a coaxial cable of inner conductor radius a...Ch. 2 - Prob. 2.69PCh. 2 - Prob. 2.70PCh. 2 - A parallel–plate capacitor with a 1.0m2 surface...Ch. 2 - Prob. 2.72PCh. 2 - Prob. 2.73PCh. 2 - Given E=5xyax+3zaZV/m, find the electrostatic...Ch. 2 - Suppose a coaxial capacitor with inner radius 1.0...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Coaxial cable has inner radius 1mm and outer radius 3mm and length 10m. %3D with material with po between them.it is carrying current I= 5A find inductance .H multiply by N 6.8x10 6 34x10-6 11x10-6 2.2x106arrow_forwardfind the potential difference for each section and between the two ends of the wirearrow_forwardA spherical capacitor having a radius of 5cm and 5.5cm for positive and negative conductor respectively. If the charges on each conductor are 9nC, what is the capacitance value of this capacitor?arrow_forward
- A semi-circular ring has an inside diametee of 6 inches and cross-sectional area of π/16 in^2. Calculate the resistance of the rint at 50 degree celcius, if the resistivity of ring is 1.74x10^-6 ohm-cm at 20 degrees celcius and the temperature coefficient at 0 degree celcius is 0.0043arrow_forwardQuestion 6: The capacitor with distance between the two conducting plates is 1.5 mm and surface area of 0.01 m², where the permittivity is 8.85x10-12 F/m a. Determine the capacitance. b. Determine the electric field strength between the plates if 450 volts are applied across the plates. c. Determine the amount of charges on each plate.arrow_forward1. Inductance. Consider the configuration of a wire with 90° bends as shown below. A small loop, with its sides of length a and width d = a/16 is placed with its plane lying along xz principal plane as shown. Stating all assumptions, determine mutual inductance between the loop and the wire. a/2 9/2 2aarrow_forward
- Q5/ An electric field of 8.5 x 105 V/m is desired between two parallel plates each of (7 cm x 8 cm) and separated by 3.5 mm of air. What charge must be on each plate? What is the value of energy stored in the capacitor? A dielectric insulator has been inserted between the two plates.What is the value of K for this insulator in order to double the charge on the plates?arrow_forward1 - For a very long conducting channel viewed sectionally in the figure below, find the potentials at the indicated points. Use the symmetry to reduce the number of unknowns. 100V OV 100V OVarrow_forwardFor the circuit shown in Figure:a. Determine the reluctance values and show themagnetic circuit, assuming that μ = 3,000μ0.b. Determine the inductance of the device.c. The inductance of the device can be modified bycutting an air gap in the magnetic structure. If a gapof 0.1 mm is cut in the arm of length l3, what is thenew value of inductance?d. As the gap is increased in size (length), what is thelimiting value of inductance? Neglect leakage fluxand fringing effects.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Delmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage Learning
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning
Introduction to Coulomb's Law or the Electric Force; Author: Flipping Physics;https://www.youtube.com/watch?v=4ubqby1Id4g;License: Standard YouTube License, CC-BY