Fundamentals of Electromagnetics with Engineering Applications
1st Edition
ISBN: 9780470105757
Author: Stuart M. Wentworth
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 2, Problem 2.52P
The typical length of each piece of jumper wire on a student’s protoboard is 5.0 cm. Assuming AWG–20 (with a wire diameter of 0.812 mm) copper wire, (a) determine the resistance for this length of wire. (b) Determine the power dissipated in the wire for
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
B. Copper wire of length (/) connected in parallel with aluminum wire of length (21) and (10mm) diameter, if the current in each wire is the same. Find the diameter of the copper wire if the resistivity of copper is (0.0159 u2-m)& for aluminum is (0.0254 ul-m).
Write the answers precisely, do not elaborate unnecessarily, and don't use chatgpt, if i caught it I'm gonna downvote Question:
Discuss the electrochemical techniques that are useful to study the capacitive properties of a material. Highlight the importance of each technique
2. When a current of 1A flows through a wire, the drift velocity of the
electrons is 0.9 mm/s. What will be the drift velocity of the electrons when
a 2A current flows through another wire of the same material having
double the length and double the area of cross section and same
temperature.
Chapter 2 Solutions
Fundamentals of Electromagnetics with Engineering Applications
Ch. 2 - Given P(4, 2, 1) and APQ=2ax+4ay+6az, find the...Ch. 2 - Prob. 2.2PCh. 2 - Prob. 2.3PCh. 2 - Suppose Q1(0.0,-3.0m,0.0)=4.0nC,...Ch. 2 - Prob. 2.5PCh. 2 - Suppose 10.0nC point charges are located on the...Ch. 2 - Four 1.00nC point charges are located at...Ch. 2 - A 20.0nC point charge exists at...Ch. 2 - Prob. 2.9PCh. 2 - Convert the following points from Cartesian to...
Ch. 2 - Prob. 2.11PCh. 2 - Prob. 2.12PCh. 2 - Prob. 2.13PCh. 2 - A 20.0–cm–long section of copper pipe has a...Ch. 2 - A line charge with charge density 2.00nC/m exists...Ch. 2 - You are given two z–directed line charges of...Ch. 2 - Suppose you have a segment of line charge of...Ch. 2 - A segment of line charge L=10.nC/m exists on the...Ch. 2 - In free space, there is a point charge Q=8.0nC at...Ch. 2 - Prob. 2.20PCh. 2 - Sketch the following surfaces and find the total...Ch. 2 - Consider a circular disk in the x–y plane of...Ch. 2 - Suppose a ribbon of charge with density S exists...Ch. 2 - Sketch the following volumes and find the total...Ch. 2 - You have a cylinder of 4.00–in diameter and...Ch. 2 - Consider a rectangular volume with...Ch. 2 - Prob. 2.27PCh. 2 - Prob. 2.28PCh. 2 - Given D=2a+sinazC/m2, find the electric flux...Ch. 2 - Suppose the electric flux density is given by...Ch. 2 - Prob. 2.31PCh. 2 - A cylindrical pipe with a 1.00–cm wall thickness...Ch. 2 - Prob. 2.34PCh. 2 - Prob. 2.35PCh. 2 - A thick–walled spherical shell, with inner...Ch. 2 - Prob. 2.37PCh. 2 - Determine the charge density at the point...Ch. 2 - Given D=3ax+2xyay+8x2y3azC/m2, (a) determine the...Ch. 2 - Suppose D=6cosaC/m2. (a) Determine the charge...Ch. 2 - Suppose D=r2sinar+sincosaC/m2. (a) Determine the...Ch. 2 - Prob. 2.42PCh. 2 - A surface is defined by the function 2x+4y21nz=12....Ch. 2 - For the following potential distributions, use the...Ch. 2 - A 100nC point charge is located at the origin. (a)...Ch. 2 - Prob. 2.46PCh. 2 - Prob. 2.47PCh. 2 - Prob. 2.48PCh. 2 - Suppose a 6.0–m–diameter ring with charge...Ch. 2 - Prob. 2.50PCh. 2 - Prob. 2.51PCh. 2 - The typical length of each piece of jumper wire on...Ch. 2 - A 150–m length of AWG–22 (0.644 mm diameter)...Ch. 2 - Determine an expression for the power dissipated...Ch. 2 - Find the resistance per unit length of a stainless...Ch. 2 - A nickel wire of diameter 5.0 mm is surrounded by...Ch. 2 - Prob. 2.57PCh. 2 - A 20nC point charge at the origin is embedded in...Ch. 2 - Suppose the force is very carefully measured...Ch. 2 - The potential field in a material with r=10.2 is...Ch. 2 - In a mineral oil dielectric, with breakdown...Ch. 2 - Prob. 2.62PCh. 2 - For z0,r1=9.0 and for z0,r2=4.0. If E1 makes a 300...Ch. 2 - Prob. 2.64PCh. 2 - Consider a dielectric–dielectric charge–free...Ch. 2 - A 1.0–cm–diameter conductor is sheathed with a...Ch. 2 - Prob. 2.67PCh. 2 - For a coaxial cable of inner conductor radius a...Ch. 2 - Prob. 2.69PCh. 2 - Prob. 2.70PCh. 2 - A parallel–plate capacitor with a 1.0m2 surface...Ch. 2 - Prob. 2.72PCh. 2 - Prob. 2.73PCh. 2 - Given E=5xyax+3zaZV/m, find the electrostatic...Ch. 2 - Suppose a coaxial capacitor with inner radius 1.0...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A wire of 59 in length and 4 mm2 has a resistance of 0.94 ohms. A 110-m length of wire of the same material has a resistance of 3 at the same temperature. Find the radius of this wire. The final unit must be in millimeter, mm.arrow_forwardLet's say we have a 0.22 µm (micrometer) think Cu wire in a 65 nanometer process. Resistivity of the Cu is 2.2 µ2 cm (micro-ohm-centimeter). a) Compute the sheet resistance of the wire b) Find the total resistance if the wire is 0.125 µm wide and 1mm long. (Ignore the barrier layer and dishing) c) Suppose that 10x unit-sized inverter drives a 2x inverter at the end of the 1 mm long of the wire. Its wire capacitance is 0.2 fF/ µm and the unit-sized nMOS transistor has R=10k and C=0.1 fF. Complete the following equivalent circuit using a single-segment II model. ( ) 2 ( ) fF Driver ( ) Ω Wire ( ) fF ₁ Load ) fF d) Estimate the propagation delay using a single-segment II Elmore delay model. (neglect diffusion capacitance)arrow_forwardsubjectarrow_forward
- Problem A potentiometer is an instrument for measuring an unknown voltage in comparison to a standard voltage. In the potentiometer shown in Figure 1.0 a 16.0-m stretch of wire AB is connected to a 9.00-V battery. The resistance per unit length of the wire is 16.0 0/mm. The movable contact P is at point B. An ammeter (circle with A inside) is connected to point A. 16.0 m A B www Figure: 1.0 A V = 9.00 Varrow_forwardaY A copper wire with (32.3m) Long, Fhe cross-sectional area (5 mm?) and the resistance is (120 r) at Zero tempera ture (o č) .When the tempperature to (50 c) the resistance become (144 72), Determine rise the temperature cofficient Cao) the specific resis tivity at (0 C) P.) 9)arrow_forwardNeglecting losses and fringing effects and assuming the substrate of a stripline to have a thickness of 0.42 (mm) and a dielectric constant of 2.83, determine the required width (in mm) of the metal strip in order for the stripline to have characteristics resistance of 78 Ohms. No need for a solution. Just write your numeric answer in the space provided. Round off your answer to 2 decimal places.arrow_forward
- aY A copper wire with (32.3 m) Long, area (5 mm?) and Fhe cross-sectional the resistance is (120 r) at Zero tempera ture Co č) . When the temperature to (50 c) the resistance become rise (144 72), Determine the temperature cofficient (a) the specific resis tivity at (0 C) P.)arrow_forwardSolve the question with complete solution.Use the conversion 1 Coulomb = 6.25E10^18 e- or p+, read as 1 Coulomb is equal to 6.25 times 10 raised to 18 no. of electrons or protons. For exponents, follow "E10^".arrow_forwardone turn of a copper bar is produced by cutting copper washer along a radius and spreading the ends. The washer is cut from soft drawn copper having a resistivity at 20 degrees celsiu of 1.732 micro ohm-cm. The washer is 0.125 inch thich and has inside diameter and outside dianmeter of 1 inch and 9 inches respectively. Calculate the exact resistance between the two end of the turn. Assume the contact along the ends of the turn to be perfect over the entire crown section.arrow_forward
- answer number 2.write your solution pls.arrow_forwardA fuse wire of circular cross-section has a radius of 0.8 mm. The wire blows off at a current of 8A. Calculate the radius of the wire that will blow off at a current of 1 A. Also calculate the Value of blow off current when radius is 0.5 mmarrow_forwardPlease answer quicklyarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:PEARSON
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning
Programmable Logic Controllers
Electrical Engineering
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:9780078028229
Author:Charles K Alexander, Matthew Sadiku
Publisher:McGraw-Hill Education
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:9780134746968
Author:James W. Nilsson, Susan Riedel
Publisher:PEARSON
Engineering Electromagnetics
Electrical Engineering
ISBN:9780078028151
Author:Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:Mcgraw-hill Education,
Magnets and Magnetic Fields; Author: Professor Dave explains;https://www.youtube.com/watch?v=IgtIdttfGVw;License: Standard YouTube License, CC-BY