Fundamentals of Electromagnetics with Engineering Applications
1st Edition
ISBN: 9780470105757
Author: Stuart M. Wentworth
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 2, Problem 2.14P
A 20.0–cm–long section of copper pipe has a 1.00–cm–thick wall and outer diameter of 6.00 cm.
- Sketch the pipe, conveniently overlaying the cylindrical coordinate system and lining up the length direction with the z–axis.
- Determine the total surface area. (This could actually be useful if, say, you needed to do an electroplating step on this piece of pipe.)
- Determine the weight of the pipe given the density of copper of 8.96 g/cm3.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
We want to investigate how the field strength will be with air as dielectric and with steatite. A plate
capacitor is placed in a 24 kV network between phase and ground. The relative permittivity of air is
&=1 and for steatite &-6. The plate capacitor has area = 1m². The distance between the electrodes is
2 mm.
Ep = 8.854-10-12 F/m
A=1m²
d=2mm
a) Calculate the maximum field strength in the plate capacitor. (Answer: 9.8kV/mm)
b) What is the capacitance of the capacitor if we use steatite? (Answer: C = 26.6nF)
quick please
> Figure 1 shows a ferromagnetic core whose mean path length is 40 cm. There is a
small gap of 0.05 cm in the structure of the otherwise whole core. The cross-sectional
area of the core is 12cm?, the relative permeability of the core is 4000 and the coil of
wire on the core has 400 turns. Assume that fringing in the air gap increases the
effective cross-sectional area of the air gap by 5 percent. Given this information.
Find the total reluctance of the flux path (iron plus air gap) and the current
required to produce a flux density of 0.5 T in the air gap.
N=400
0.05 cm
A-12 cm
- 40 cm
Figure 1
Chapter 2 Solutions
Fundamentals of Electromagnetics with Engineering Applications
Ch. 2 - Given P(4, 2, 1) and APQ=2ax+4ay+6az, find the...Ch. 2 - Prob. 2.2PCh. 2 - Prob. 2.3PCh. 2 - Suppose Q1(0.0,-3.0m,0.0)=4.0nC,...Ch. 2 - Prob. 2.5PCh. 2 - Suppose 10.0nC point charges are located on the...Ch. 2 - Four 1.00nC point charges are located at...Ch. 2 - A 20.0nC point charge exists at...Ch. 2 - Prob. 2.9PCh. 2 - Convert the following points from Cartesian to...
Ch. 2 - Prob. 2.11PCh. 2 - Prob. 2.12PCh. 2 - Prob. 2.13PCh. 2 - A 20.0–cm–long section of copper pipe has a...Ch. 2 - A line charge with charge density 2.00nC/m exists...Ch. 2 - You are given two z–directed line charges of...Ch. 2 - Suppose you have a segment of line charge of...Ch. 2 - A segment of line charge L=10.nC/m exists on the...Ch. 2 - In free space, there is a point charge Q=8.0nC at...Ch. 2 - Prob. 2.20PCh. 2 - Sketch the following surfaces and find the total...Ch. 2 - Consider a circular disk in the x–y plane of...Ch. 2 - Suppose a ribbon of charge with density S exists...Ch. 2 - Sketch the following volumes and find the total...Ch. 2 - You have a cylinder of 4.00–in diameter and...Ch. 2 - Consider a rectangular volume with...Ch. 2 - Prob. 2.27PCh. 2 - Prob. 2.28PCh. 2 - Given D=2a+sinazC/m2, find the electric flux...Ch. 2 - Suppose the electric flux density is given by...Ch. 2 - Prob. 2.31PCh. 2 - A cylindrical pipe with a 1.00–cm wall thickness...Ch. 2 - Prob. 2.34PCh. 2 - Prob. 2.35PCh. 2 - A thick–walled spherical shell, with inner...Ch. 2 - Prob. 2.37PCh. 2 - Determine the charge density at the point...Ch. 2 - Given D=3ax+2xyay+8x2y3azC/m2, (a) determine the...Ch. 2 - Suppose D=6cosaC/m2. (a) Determine the charge...Ch. 2 - Suppose D=r2sinar+sincosaC/m2. (a) Determine the...Ch. 2 - Prob. 2.42PCh. 2 - A surface is defined by the function 2x+4y21nz=12....Ch. 2 - For the following potential distributions, use the...Ch. 2 - A 100nC point charge is located at the origin. (a)...Ch. 2 - Prob. 2.46PCh. 2 - Prob. 2.47PCh. 2 - Prob. 2.48PCh. 2 - Suppose a 6.0–m–diameter ring with charge...Ch. 2 - Prob. 2.50PCh. 2 - Prob. 2.51PCh. 2 - The typical length of each piece of jumper wire on...Ch. 2 - A 150–m length of AWG–22 (0.644 mm diameter)...Ch. 2 - Determine an expression for the power dissipated...Ch. 2 - Find the resistance per unit length of a stainless...Ch. 2 - A nickel wire of diameter 5.0 mm is surrounded by...Ch. 2 - Prob. 2.57PCh. 2 - A 20nC point charge at the origin is embedded in...Ch. 2 - Suppose the force is very carefully measured...Ch. 2 - The potential field in a material with r=10.2 is...Ch. 2 - In a mineral oil dielectric, with breakdown...Ch. 2 - Prob. 2.62PCh. 2 - For z0,r1=9.0 and for z0,r2=4.0. If E1 makes a 300...Ch. 2 - Prob. 2.64PCh. 2 - Consider a dielectric–dielectric charge–free...Ch. 2 - A 1.0–cm–diameter conductor is sheathed with a...Ch. 2 - Prob. 2.67PCh. 2 - For a coaxial cable of inner conductor radius a...Ch. 2 - Prob. 2.69PCh. 2 - Prob. 2.70PCh. 2 - A parallel–plate capacitor with a 1.0m2 surface...Ch. 2 - Prob. 2.72PCh. 2 - Prob. 2.73PCh. 2 - Given E=5xyax+3zaZV/m, find the electrostatic...Ch. 2 - Suppose a coaxial capacitor with inner radius 1.0...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A triac can pass a portion of …………… half-cycle through the load a. neither positive nor negative b. both positive and negative c. only negative d. only positivearrow_forwardWrite the answers precisely, do not elaborate unnecessarily, and don't use chatgpt, if i caught it I'm gonna downvote Question: Discuss the electrochemical techniques that are useful to study the capacitive properties of a material. Highlight the importance of each techniquearrow_forward> Figure 1 shows a ferromagnetic core whose mean path length is 40 cm. There is a small gap of 0.05 cm in the structure of the otherwise whole core. The cross-sectional area of the core is 12cm2, the relative permeability of the core is 4000 and the coil of wire on the core has 400 turns. Assume that fringing in the air gap increases the effective cross-sectional area of the air gap by 5 percent. Given this information. Find the total reluctance of the flux path (iron plus air gap) and the current required to produce a flux density of 0.5 T in the air gap. N=400 tums 0.05 cm A=12 cm? le-40 cm Figure 1arrow_forward
- Figure 1 shows a ferromagnetic core with a relative permeability of 1850, the depth of the core is 10 cm. The air gap on the core is 0.2 cm with effective area 5 % larger than their physical size due to fringing effects. Given the number of turns N = 500 and current i = 2 x, where x is the last digit of your student ID (example: EEE1705590, then i = 20 A): (a) Find the total reluctance of the core and air gap. [CLO1-PL01:C2] (b) Find the flux density of the air gap. [CLO1-PLO1:C2] 13 cm 23 cm 9 cm 5.6 сm Air gap 31 cm N turns 7 cm Figure 1arrow_forwardCan you please answer the one in red and also round to at least 4 decimal places when applicable..arrow_forward1.2 Magnetic Circuits The figure shows a ferromagnetic core whose mean path length is 40cm. There is a small gap of 0.05 cm in the structure of the otherwise whole core. The cross-sectional area of the core is 12 cm², the relative permeability of the core is 4000, and the coil of wire on the core has 400 turns. Assume that fringing in the air gap increases the effective cross-sectional area of the air gap by 5 percent. Mr = 4000 N=400 turns ·25.4m² Il=0.0005m A=0.0012 m² Given this information: a) Find the total reluctance of the flux path (iron plus air gap). b) Find the current required to produce a flux density of 0.5 T in the air gap. c) Qualitatively describe the effect of the air gap on the magnetic circuit.arrow_forward
- Explain the modifciation to be made to the schering bridge for the following situations: i) Hihg dissipation factor test objects II) High capacitance test objects Explain in easy language so i can understandarrow_forwardA hollow conductor us at a potential V. The potential at any point inside the hollow is,arrow_forward2) C. When the capacitor is fully charged, the top conductor while the bottom conductor D. Electric field lines are and a potential difference is E. The capacitance of a capacitor is defined as F. The unit of capacitance isarrow_forward
- The figure shows a ferromagnetic core. The core depth is 5 cm. The other dimensions of the core can be seen in the figure. Find the value of the current produced by a flow of 0.005 Wb. With this current, specify the flux density on the right side of the core. Assume a relative core permeability of 800 and a 0.0017 cm gap between the thinnest part of the core. 15 cm N= 500 0.0017 cm 15 cm 15 cm - 10 cm af- 20 cm Depth 5 cmarrow_forwardAn air gap has a length of 0.1 cm. What length of iron core has the same reluctance as the air gap? The relative permeability of the iron is 5000. Assume that the cross-sectional areas of the gap and the core are the same.arrow_forwardWhich of the following is not true for ferromagnetic materials? Please choose one: a. High?mthey have value. b.Above the Curie temperature, they lose their non-linear properties. C. a fixedµrthey have value. D.The energy loss is proportional to the area of the hysteresis loop.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:PEARSON
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning
Programmable Logic Controllers
Electrical Engineering
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:9780078028229
Author:Charles K Alexander, Matthew Sadiku
Publisher:McGraw-Hill Education
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:9780134746968
Author:James W. Nilsson, Susan Riedel
Publisher:PEARSON
Engineering Electromagnetics
Electrical Engineering
ISBN:9780078028151
Author:Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:Mcgraw-hill Education,
Routh Hurwitz Stability Criterion Basic Worked Example; Author: The Complete Guide to Everything;https://www.youtube.com/watch?v=CzzsR5FT-8U;License: Standard Youtube License